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Ø True Amplitude Imaging (RTM)

Ø Acceleration of linear/nonlinear waveform inversion

Ø Inversion Velocity Analysis
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FWI
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Full Waveform Inversion (FWI) finds velocity model to 

minimize the data misfit: 

Ø Extends into any modeling physics, data geometry

Ø Large scale, nonlinear, ill-posed problem 

velocity model observed data

forward modeling operator

JFWI[m] =
1

2
||F [m]� d

obs

||2



Behavior of Objective Function

Simple Example:
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Behavior of Objective Function
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Ø “Cycle Skipping” problem (local minima)

Ø start within half wavelength: 

good initial, low frequency, far offset 
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Model Extension

Ø Our goal: immune to “cycle skipping”

Ø Solution: Hug the data!!!
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Model Extension

Ø Extended Model:

Ø Extended Modeling

Ø Extension Parameter:

Many choices: surface / subsurface offset, source, reflection angle…

Ø Extended model are not physical
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M ! M̄

F [m] = F̄ [m̄]

Model Extension + Physical Constraint

F̄ : M̄ ! D
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Model Separation

Ø Separate model into two parts

F [m] ⇡ F [m0] + F [m0]�m

m = m0 + �m

Ø Two-step Problem 

Velocity Model Reflectivity ModelBackground Model

Born Modeling Operator
7

m m0 �m



Born modeling and its adjoint

Ø Born modeling (single scattering) operator
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S R

Ø Adjoint Operator

(F ⇤[v0]�d)(x) =
2

v0(x)3

Z
dxsdxrdtd⌧G(xs,x, ⌧)G(x,xr, t� ⌧)

@2

@t2
�d(xs,xr, t)

(F [v0]�v)(xs,xr, t) =
@2

@t2

Z
dxd⌧G(xs,x, ⌧)

2�v(x)

v0(x)3
G(x,xr, t� ⌧)

S R

Born Modeling Adjoint Operator



Model Extension + Model Separation

Ø Subsurface offset extension

x

z

x

z

h

Physical Model Extended Model

S R

h h

�v̄(x, h) = �v(x)�(h)
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Ø Physical Meaning

Action at a distance: stress leads to strain at a distance



Extended Born modeling Operator

Ø Extended Born modeling operator and its adjoint

(F̄ [v0]�v̄)(xs,xr, t) =
@2

@t2

Z
dxdhd⌧G(xs,x� h, ⌧)

2�v̄(x,h)

v0(x)3
G(x+ h,xr, t� ⌧)

(F̄ ⇤[v0]�d)(x,h) =
2

v0(x)3

Z
dxsdxrdtd⌧G(xs,x� h, ⌧)G(x+ h,xr, t� ⌧)

@2

@t2
�d(xs,xr, t)
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Correct Velocity Model



MVA

Ø Partially Linearized Problem

F̄ [m0]�m̄ ' d� F [m0]

�m̄

m0

• Find        to fit the data

• Find        to satisfy the semblance condition

Ø Migration Velocity Analysis (MVA) (Shen and Symes,2003)

Update velocity based on migrated image volume
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MVA via DSO

JMVA[m0] =
1

2
||AI(x, z, h)||2

• A : Annihilator, A=h

• I(x,z,h) can be computed via various migration

Ø J  is quadratic in image and data (implicitly), 

regardless of the frequency components

Ø Smooth in velocity  
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Only choice (Stolk & Symes, 2003)
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“Gradient Artifacts”

(Liu and Symes, 2014)

Ø Root reason: imperfect image volume

13

Ø Gradient artifacts : updating to the wrong direction
(Fei and Williamson, 2010; Vyas and Tang, 2010)



Approximate Inverse Operator

F̄ † ' W�1
model

F̄TW
data

(Ten Kroode, 2012; Hou and Symes,2015)

Ø

Ø Derivation is based on High Frequency Approx.

Ø Implementation doesn’t involve any ray tracing

Ø Invert the data even when velocity is wrong

W�1
model

= 4v50 |kxz||khz| Wdata = I4t DzSDzR
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Approximate Inverse Operator

Background Velocity Model
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• 2-8 finite difference, 231 shots & 461 receivers
• 2.5-5-30-35Hz Bandpass wavelet

• 1ms time sample, 10m grid interval



Approximate Inverse Operator

Reflectivity Model
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Approximate Inverse Operator

Inverted Model
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F̄ †d



Approximate Inverse Operator

Stacked Model
X

h

I(x, h)
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Approximate Inverse Operator

Original Data d
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Approximate Inverse Operator

Resimulated Data F̄ F̄ †d
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Approximate Inverse Operator

Single Data Trace Comparison
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Original Data Resimulated Data



Approximate Inverse Operator

Single Image Trace Comparison
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Reflectivity Model Stacked model



Imaging Operators

Ø Conventional RTM Operator

Ø Adjoint Operator

Ø Approximate Inverse Operator

I(x, h) =

Z
dxsdxrdtd⌧G(xs,x� h, ⌧)G(x+ h,xr, t� ⌧)d(xs,xr, t)

F̄ † ' W�1
model

F̄TW
data

I(x, h) =
2

v0(x)3

Z
dxsdxrdtd⌧G(xs,x� h, ⌧)G(x+ h,xr, t� ⌧)

@2

@t2
d(xs,xr, t)
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Objective Function Behavior
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Numerical Experiment

• 2-8 finite difference, 151 shots & 301 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval

True Model
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Numerical Experiment

• 2-8 finite difference, 151 shots & 301 receivers
• 2.5-5-20-25Hz Bandpass wavelet

• 2ms time sample, 20m grid interval

Initial Model
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Numerical Experiment
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Numerical Experiment

VA with Conventional RTM Operator
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Numerical Experiment

VA with Adjoint Operator
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Numerical Experiment

VA with Appinv. Operator

3830



Numerical Experiment

Image with Initial Model
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Numerical Experiment

Image with Recovered Model (Conventional RTM)
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Numerical Experiment

Image with True Model
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Numerical Experiment

Image with Recovered Model (Adjoint Operator)
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Numerical Experiment

Image with True Model
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Numerical Experiment

Image with Recovered Model (Appinv)
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Numerical Experiment

Image with True Model
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Numerical Experiment

CIG with Initial Model
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Numerical Experiment

CIG with Recovered Model (RTM)
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Numerical Experiment

CIG with Recovered Model (Adjoint)
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Numerical Experiment

CIG with Recovered Model (Appinv)
4941



Numerical Experiment

CIG with True Model
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Conclusion

Ø MVA complements FWI by extracting long-scale

information

Ø “Gradient Artifacts” are features of the objective

function, not gradient

Ø Approximate inverse operator improve the

performance of velocity analysis
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