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Dr. Béatrice M. Rivière
Full Professor of Computational and
Applied Mathematics

Houston, Texas

February, 2015



ABSTRACT

Discontinuous Galerkin and Finite Difference Methods for the Acoustic Equations

with Smooth Coefficients

by

Mario Bencomo

This thesis analyzes the computational efficiency of two types of numerical meth-

ods: finite difference (FD) and discontinuous Galerkin (DG) methods, in the context

of 2D acoustic equations in pressure-velocity form with smooth coefficients. The

acoustic equations model propagation of sound waves in elastic fluids, and are of

particular interest to the field of seismic imaging. The ubiquity of smooth trends

in real data, and thus in the acoustic coefficients, validates the importance of this

novel study. Previous work, from the discontinuous coefficient case of a two-layered

media, demonstrates the efficiency of DG over FD methods but does not provide

insight for the smooth coefficient case. Floating point operation (FLOPs) counts are

compared, relative to a prescribed accuracy, for standard 2-2 and 2-4 staggered grid

FD methods, and a myriad of standard DG implementations. This comparison is

done in a serial framework, where FD code is implemented in C while DG code is

written in Matlab. Results show FD methods considerably outperform DG methods

in FLOP count. More interestingly, implementations of quadrature based DG with

mesh refinement (for lower velocity zones) yield the best results in the case of highly

variable media, relative to other DG methods.
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Chapter 1

Introduction

This thesis analyzes the computational efficiency of two types of numerical methods,

finite difference (FD) and discontinuous Galerkin (DG) methods, in the context of

the 2D acoustic equations in velocity-pressure form with smooth coefficients. The

key question addressed is as follows: How does computational efficiency of FD and

DG methods compare in the case where coefficients of the acoustic equations vary

smoothly? I provide results for some canonical smooth media examples and analyze

their computational cost relative to accuracy. A better understanding of the compu-

tational behavior of FD and DG methods, applied to acoustics, will have implications

in seismic imaging and oil prospecting.

1.1 Motivation

Seismic Surveys

Seismic surveying is a common prospecting practice throughout the oil industry,

consisting of generating and measuring seismic waves as they propagate through a

medium of interest from which relevant geophysical information may be recovered.

Seismic waves are induced by impulsive energy sources, such as: projectiles, impactors
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(i.e., weight drops), explosives, and electrical impulse sources. The choice of source is

of course dependent on application and particular source considerations. For example,

air guns are the source of choice in marine surveying while the impact of a sledge-

hammer hitting the ground would suffice for shallow seismic surveying; see (Sheriff

and Geldart, 1995) and Burger et al. (2006) for more on sources in applications to

seismic surveying. Fig. 1.1 shows the canonical setup for marine seismic surveying.

A sound wave source (air guns releasing compressed air in this application) induces

seismic waves that propagate down to the ocean floor, interact with the subsea rock

formations, and later recorded by acoustic receivers on streamers. The data is then

analyzed in order to obtain information that will help identify and localize oil and

gas reserves. Several streamers are towed across the water during data acquisition,

with lengths reaching up to 5 kilometers spanning over 500 meters wide, roughly a

30 by 3 city block area (FishSAFE, 2013). Clearly the dimensions involved in seismic

surveying alone convey value of the data acquired, and more importantly highlight

the necessity optimal data analysis.

Inversion theory provides the mathematical framework for the analysis of seismic

data and ultimately the ability to extract parameters pertaining to physical phe-

nomena. Furthermore, the forward problem plays a crucial role in the accuracy and

development of inversion methods. The problem of waveform inversion, at least that

of full waveform inversion, is typically formulated as a least squares problem with

a nonlinear objective function. Iterative optimization techniques used to solve the
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Figure 1.1 : Marine seismic surveying setup, adapted from FishSAFE (2013).

least squares problem require the solution of several forward problems per iteration.

Hence, the “quality of the results of any inverse method,” and thus the recovered

seismic image, “depends heavily on the realism of the forward modeling” (Gauthier,

Virieux, and Tarantola, 1986).

The Forward Problem: Acoustic Equations and Smooth Coefficients

The forward problem, in the context of seismic imaging, comprises of modeling the

phenomena of seismic wave propagation through the Earth’s subsurface. The acoustic

equations, given by Eq. (2.1), describe the first order perturbation of the conserva-

tion laws of mass and momentum obeyed by an elastic fluid close to equilibrium.

See Gurtin (1981), pp. 122-137, for a complete discussion of elastic fluids and a

derivation of the acoustic equations. The acoustic equations model the propagation

of compressional waves (or P-waves) in elastic fluids, however a more realistic phys-
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ical representative of Earth’s subsurface formations is an elastic material in which

the dynamics of this system is given by the elasticity equations. The core difference

between elastic fluids and elastic materials lies in the nature of their constitutive

equations; stress is a function of the relative deformation for elastic materials, where

in the case of elastic fluids (and in general inviscid fluids) stress is given by a pressure

(Gurtin, 1981, §17). Consequently shear waves (or S-waves) arise in elasto-dynamics

and are indeed observed in seismic applications. Not surprisingly, higher fidelity in

the physics gives rise to complexity in the model; there are 21 parameters associated

with the stress tensor for anisotropic linear elasticity. Currently the discrepancy be-

tween accuracy gain and computational cost of the elasticity equations is considerable

for the large scale nature of seismic surveying, thus making the acoustic equations

the traditional choice for seismic wave modeling and inversion in the oil industry.

In this study I consider the acoustic equations with smooth coefficients (i.e., den-

sity and bulk modulus will vary smoothly in space), a case relevant for seismic imag-

ing. Layered media arise naturally in geological formations, corresponding to discon-

tinuities in coefficients. Equally relevant are gradual variations in the media due to

large time scale influences such as sediment accumulation. Consider Fig. 1.2, adapted

from Sheriff and Geldart (1995), a plot of velocity (speed of sound) versus depth for

Gulf Coast sands and shales and offshore Venezuela. Clearly “smooth” trends are

observed for the various data motivating the use of smooth coefficients.
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Figure 1.2 : Velocity-depth profiles for Gulf Coast sands and shales, and offshore
Venezuela (Sheriff and Geldart, 1995, pp. 120).

1.2 Literature Review

Finite Difference Methods

Finite difference (FD) methods are classical numerical methods for solving a variety

of differential equations. An extensive overview of FD methods for seismic wave sim-

ulations is given by Moczo et al. (2007). Standard FD methods consist of discretizing

the domain of interest into uniformly spaced grid points, where partial derivatives are

approximated by finite differences of the function evaluated at specified grid points,

also referred to as the stencil of the FD method.

Staggered grid FD methods were introduced by Madariaga (1976) for propagation
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of P-SV elastic waves in fault dynamics and by Virieux (1984, 1986) in the context of

P-SV and SH elastic waves in heterogeneous media. SV and SH denote the vertical

and horizontal polarization of shear waves, or S-waves, respectively. These methods

resolve stability issues present in conventional grid FD for elastic waves in media

with large Poisson’s ratio, and provide a unified scheme for acoustic-elastic coupled

systems, of importance to marine-seismic surveying. Levander (1988) later generalized

staggered grid FD to higher order methods, in particular the O(∆t2, h4) or 2-4 order

staggered grid scheme (second-order and fourth-order accuracy in time and space

respectively) for P-SV wave propagation. Along with preserving stability properties

of staggered grid methods, the 2-4 scheme reduces the number of nodes needed in

memory storage to one fourth of the nodes required for second-order in space P-SV

staggered grid methods, while maintaining computation times comparable to other

fourth-order in space methods.

The finite difference methods considered in this thesis are the acoustic variant

of the 2-2 and 2-4 order staggered grid methods proposed by Virieux (1986) and

Levander (1988). These numerical schemes can be viewed as a two-part discretiza-

tion process: first a discretization in space, for a semi-discrete scheme, and then in

time resulting in a fully-discretized scheme. This procedure of discretization is known

as the method of lines (MOL) and provides a methodology for analyzing stability and

convergence of fully discretized schemes. Stability criteria of these numerical methods

yield relationships between the spatial and temporal discretization that must be satis-
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fied for stability of the numerical method. In particular, Virieux (1986) and Levander

(1988) have shown the following stability criterion for the 2-2 and 2-4 staggered grid

FD methods, respectively:

∆t <
1√
2VP

h (2-2 FD) (1.1)

∆t <
0.606

VP
h (2-4 FD) (1.2)

where VP is the compressional velocity. Equations 1.1 and 1.2 were derived in the

context of 2-D isotropic elasticity, assuming ∆x = ∆z = h. Note that these stability

limits are independent of the shear velocity VS, and hence independent of Poisson’s

ratio, unlike some standard FD methods (Virieux, 1986; Levander, 1988). Stability

limits will effectively impose a constraint on how large the time step ∆t can be taken

relative to the spatial discretization h, something to keep in mind when considering

computational cost. Clearly, in terms of computational cost, methods with larger

stability regions are more attractive, though the higher accuracy of a method can

offset these associated costs.

Another numerical property that will impact the accuracy and overall computa-

tional cost of FD methods is grid dispersion, also analyzed in Virieux (1986) and

Levander (1988) for the 2-2 and 2-4 staggered grid FD methods respectively. Con-

sider a plane wave with given wave vector k and frequency ω. The relationship of

ω with respect to k as the plane wave propagates through the medium is known as
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the dispersion relation. Grid dispersion is the discrepancy in the dispersion relation

between the continuum equations and discrete system given by the numerical scheme.

Moreover, mismatch in the dispersion relation corresponds to errors in arrival times

for waves at given frequencies, thus potentially degrading substantially the accuracy

of the numerical method. Grid dispersion can be minimized however by refining

the spatial discretization h, more precisely increasing the number of grid points per

wavelength. Sampling ratios of 10 and 5 grid points per wavelength, for the short-

est wavelength, are used as a rule of thumb for the 2-2 and 2-4 staggered grid FD

methods respectively (Virieux, 1986; Levander, 1988).

Overall, the numerical behavior of FD methods is well understood and well cata-

loged throughout the applied mathematics community and applications thereof. The

strengths of FD methods however rely heavily on the simplicity of the domain ge-

ometries and smoothness of medium parameters. The necessity for dealing with

discontinuities in material parameters and the rise of high performance computing

within the oil industry has lead to applications of numerical methods other than FD

methods, namely finite elements and variants such as spectral elements and discon-

tinuous Galerkin. Of course this thesis work is primarily concerned with the case of

smooth coefficients, as alluded in the title. Nevertheless I will briefly detour into mod-

eling wave propagation under discontinuous medium parameters in order to recount

how the discontinuous Galerkin method has gained traction in the field of seismic

modeling.
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Discontinuous Galerkin Methods

The discontinuous Galerkin (DG) method comprises of approximating the solution

of a PDE via a Galerkin approximation where discontinuities are allowed, though

penalized in some manner. In more precise words, the PDE solution is approximated

by a numerical solution such that, when the numerical solution is applied to a speci-

fied weak formulation, it yields a residual orthogonal with respect to a chosen finite

dimensional space. The DG method was first introduced by Lesaint and Raviart

(1974) for the neutron transport problem and since then has been extended to a va-

riety of applications: fluid transport in porous media, Navier-Stokes flow, and wave

propagation to name a few. I refer to Cockburn (2003) for a comprehensive overview

of DG methods and applications. DG methods have since gained popularity due to

their geometric flexibility and mesh and polynomial order adaptivity, also known as

hp adaptivity. Moreover, these methods can yield explicit schemes at each time-step

(after inverting a block diagonal matrix), thus resulting in tractable algorithms for

time-dependent hyperbolic problems such as wave propagation.

There is almost a zoology of DG schemes for the modeling of wave propagation that

results from availability of choice, for example: the choice of approximation spaces,

choice of basis functions, how to handle jump discontinuities across elements, choice

of elements, etc.. Penalty DG methods are amongst the more popular schemes for

acoustic and elastic wave propagation problems in their second order form, sometimes

referred to as the displacement formulation. The following papers cover some of the
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analysis in numerical stability, grid dispersion, and error estimates of these methods:

De Basabe and Sen (2010), De Basabe et al. (2008), Grote et al. (2006), Riviere

and Wheeler (2003). This thesis work will be concerned with the first order form

of the acoustic wave equation, also known as the velocity-stress or velocity-pressure

formulation. I chose the first order formulation primarily for the fact that the FD

schemes selected in this comparison are based on this formulation. In particular, I

will be considering the Runge-Kutta DG scheme with upwind flux for the acoustic

equations in velocity-pressure form.

The implementation details and the development of the DG method used in this

work is based off a nodal approach, where the approximation spaces are spanned by

multivariate Lagrange polynomials (Hesthaven and Warburton, 2007). The article

on time domain solutions to Maxwell’s equations via nodal high-order methods on

unstructured nodes by Hesthaven and Warburton (2002) contains methodology and

analysis that carries over to my thesis. In particular, Hesthaven and Warburton (2002)

prove and demonstrate that the global error of the semi-discrete solution grows at

most linearly in time and can be minimized through hp refinement:

‖q(t)− qN(t)‖Ω ≤ O(hN+1) + tO(hN), (1.3)

assuming that the true solution is smooth enough, where q and qN denote the true

and numerical solutions respectively and N is the maximal order of the polynomials

in the approximation space.
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The low-storage fourth order Runge-Kutta method used for time discretization

in this thesis work was first proposed by Carpenter and Kennedy (1994). Runge-

Kutta DG (RK-DG) methods have since then gained popularity primarily attributed

to having a time-limiting step size proportional to the mesh size h divided by the

maximum propagation speed vmax,

∆t ≤ CFL

vmax
min

Ω
h, (1.4)

as mentioned by Hesthaven and Warburton (2002), with maximum velocity vmax

in the medium. Note that for a 2D triangular mesh, h consists of the diameter of

the largest circle inscribed at a triangle. There are two main drawbacks of RK-DG

methods that are current research topics and worth mentioning: the time step size

is dependent on the globally smallest h rather than a local h which can be of issue

for h-adaptive methods. Second, the CFL constant turns out to be dependent on the

polynomial order N of the DG scheme, in particular CFL = O( 1
N2 ), which hampers

the convergence and computational benefits of higher order methods. A time-space

DG method is proposed by Monk and Richter (2005) allowing for a more efficient

“local” time-space stability criterion appropriate for h adaptive algorithms. The

spatial order dependency of the CFL condition in Eq.(1.4) is addressed by Warburton

and Hagstrom (2008), acquiring a CFL condition independent of polynomial order.

Despite these time-limiting step size disadvantages, the RK-DG with upwind flux

method is still a competitive candidate for the simulation of wave propagation as
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shown in many of the research studies to be cited shortly, and is thus in part the

subject of this thesis.

As discussed previously for FD methods, grid dispersion is an important numerical

phenomenon that plays a crucial role in the accuracy of wave propagation. Aside from

errors in the phase velocity, that is grid dispersion, DG schemes considered here suffer

from dissipation errors, where amplitudes of waves appear to be over attenuated due to

numerical errors. This dissipation error is inherent to the choice of flux; in particular

one can show that the total energy of the semi-discrete system decays with time due to

the dissipative nature of the upwind flux, as oppose to the true conservative nature of

hyperbolic systems. De Basabe and Sen (2007) provide analysis and numerical results

of grid dispersion for some common finite element and spectral element methods in

application to acoustic and elastic wave propagation, along with some comparisons

to FD methods. Ainsworth (2004) studies the dissipation and dispersion errors under

hp refinement of the DG method applied to a linear advection equation. Specifically,

Ainsworth (2004) shows that the polynomial order N can be chosen such that the

dispersion error decays super-exponentially if 2N + 1 ≈ chk for a given mesh size h

and wavenumber k, for some constant c > 1. Work by Hu et al. (1999) provide an

interesting analysis of anisotropy in dispersion and dissipation errors on quadrilateral

and triangular uniform meshes for DG methods applied to 2D wave propagation

problems. More importantly, the 1D analysis by Hu et al. (1999) will serve as a

guideline to spatially discretize the domain with respect to a resolvable wavenumber;
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specifics will be revealed in the results section.

DG schemes, similar to the RK-DG method implemented in this work, have re-

cently gained popularity in the field of seismic modeling. In particular, current work

focuses on the analysis, applications, and extensions of DG schemes to the context

of discontinuous media. Work by Wang (2009) and Wang et al. (2010), on the com-

parison of DG and FD methods for time domain acoustics, reveals the efficiency of

the DG method over staggered FD methods for the case of complex piecewise con-

stant media. Interface errors over the discontinuity reduce the convergence rate of

FD methods to first order, while a DG scheme with an appropriately aligned mesh

results in a sub-optimal second order method making DG a more efficient method for

complicated models.

Zhebel et al. (2013) perform a study on the parallel scalability of FD and finite

element methods, including mass lumped finite elements and DG, for 3D acoustic

wave propagation in piecewise constant media with a dipping interface on an Intel

Sandy Bridge dual 8-core machine and Intel’s 61-core Xeon Phi. Overall the DG

method demonstrated larger speed up on Sandy Bridge as the number of cores was

increased and the problem size is kept constant, partly due to the fact that DG

involves more net FLOPs (floating point operations) relative to other methods. In-

terestingly enough, for Intel’s Xeon Phi, FD and DG methods showed similar strong

scalability performance, for an “optimal” choice of FD domain subdivisions. Lastly,

convergence results by Zhebel et al. (2013) demonstrate again the superior accuracy
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of finite element type methods with mesh alignment to that of FD methods. Another

interesting study was conducted by Simonaho et al. (2012), where DG simulations

of acoustic wave propagation were compared to real data. Author’s simulated and

acquired 3D experimental data for pulse propagation and scattering from a cylinder

in air. Results show that simulated data matches measurement time-series well up to

4.5 ms for the pulse propagation study. Moreover, amplitude spectrum of the simu-

lated data closely resembles that of real data for frequencies less than 2kHz. For the

scattering cylinder case, simulated data contained all of the representative qualitative

characteristics present in the real data, that is interference patterns from reflections

and diffractions due to the cylinder, for 2D spatial slices at given time-shots.

A lot of the work on DG applied to wave propagation cited above, assumes that the

medium parameters are piecewise constant for implementation purposes. Atkins and

Shu (1998) and Hesthaven and Warburton (2007) propose efficient quadrature-free

DG implementation strategies in the case of piecewise constant media on triangular

meshes. Aside from reduction in code complexity and overhead computational cost,

these quadrature-free implementations result in lower memory costs associated with

storing DG operators relative to their quadrature based counterparts. On the other

hand, quadrature based implementations have the upper hand in terms of accuracy,

since medium parameters as variable functions in space within mesh elements are

better representatives than piecewise constant coefficients when computing element-

wise integrals in the definition of DG operators such ass mass and stiffness matrices.
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For example, Ober et al. (2010) employ quadrature based DG implementations in

the context of acoustic seismic inversion. Collis et al. (2010) provide a comparison

between the quadrature-free and quadrature based DG implementations for elastic

wave propagation in variable media. Their results show that the numerical solutions

for piecewise constant and variable models do not converge to the same limit as the

polynomial order is increased. However, Collis et al. (2010) does not provide any

insight into the performance and efficiency of quadrature-free and quadrature based

implementations, a topic of importance that will be discussed in this thesis work.

1.3 Claim

Few studies have been made comparing the computational efficiency of FD and DG

methods in the context of the acoustic equations. Wang (2009) provides a compari-

son for 2D acoustics with discontinuous coefficients. He demonstrates the efficiency

of a standard DG method, with curvilinear elements, over the 2-4 staggered grid

FD method for a 2D dome model, results attributed to the inadequacy of FD meth-

ods to resolve complex geometric interfaces. Collis et al. (2010), Ober et al. (2010)

apply DG to acoustic and elastic wave propagation in variable media, but do not

offer an elucidated comparison between quadrature-free and quadrature based DG

implementations relative to FD solvers.

Recent computational studies of FD and DG methods consider top of the line

hardware, software, and programming implementations in order to achieve efficient
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solvers that will ultimately minimize runtimes (Zhebel et al., 2013; Zhou, 2014). It

is well observed that DG methods suffer from a higher computational costs in terms

of FLOP counts, however the total runtime can be significantly mitigated as con-

sequence of the method’s higher accuracy, parallel scalability, and computational

efficiency (Zhebel et al., 2013; Wang, 2009; Wang et al., 2010). On the other hand,

Zhou (2014) has experimented with optimizing FD stencil code on multi-core pro-

gramming by improving vectorization and minimizing memory traffic, in particular

for the constant density acoustic wave equation, yielding 20% to 30% of peak FLOPs

per second depending on compiler and FD approximation order. The end goal of mod-

eling software within seismic imaging is to provide fast accurate solvers to be used in

inversion algorithms; clearly, runtimes are a direct and highly relevant metric of the

speed of these solvers. However, measuring runtimes is dependent on the hardware,

software, implementation, etc., a measure that is at times not very portable. I con-

sider instead a more fundamental manner in comparing FD and DG, that is through

counting FLOPs, which will only depend on the algorithm, and it’s implementation

to some degree, of the numerical method. The relationship between runtimes and

FLOP counts can of course be complicated, especially when comparing between two

very different numerical methods like FD and DG. FLOP counting will nonetheless

offer a point of reference and insight into the computational costs and efficiency of

these methods.

In my work, I offer a baseline comparison of FD and DG methods in the context
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of the acoustic wave equation in first order form with smoothly varying coefficients,

a regime in which interface errors are not of issue. Moreover, both quadrature-free

and quadrature based implementations will be studied in this analysis for the sake of

completeness. In particular, I compare computational cost for a prescribed accuracy

on several smooth models.

1.4 Agenda

The remainder of the thesis will consist of three more chapters. Chapter 2 will develop

in some detail the finite difference and discontinuous Galerkin methods considered

here, in particular highlighting considered implementation strategies. Numerical sim-

ulations and results will be discussed in Chapter 3. Finally, Chapter 4 will summarize

and interpret the results and give some concluding remarks.
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Chapter 2

Methods

2.1 Introduction

This Chapter derives to some detail the finite difference and discontinuous Galerkin

methods considered in this study. The staggered grid finite difference methods applied

to the acoustic equations are derived for the general 2-2k order case in §2.3. Several

aspects of the discontinuous Galerkin method are discussed in §2.4, in particular

the derivation of the semi-discrete scheme, choice of flux, time discretization, and

implementation options for handling variable media.

2.2 Model Problem

The 2D acoustic equations, in velocity-pressure form, are given by the following sys-

tem of first order PDEs:

ρ(x)
∂v

∂t
(x, t) +∇p(x, t) = f(x, t), (2.1a)

β(x)
∂p

∂t
(x, t) +∇ · v(x, t) = g(x, t), (2.1b)
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for x = [x, y]T ∈ Ω ⊂ R2 and 0 ≤ t ≤ T , for some final time T > 0. Here ρ

and β = 1/κ represent density and compressibility (i.e., the reciprocal of the bulk

modulus κ) respectively. Furthermore, v = [vx, vy]
T is the velocity vector, p is the

pressure, and f = [fx, fy]
T and g are source terms. It will be assumed that ρ and β are

smooth functions in the spatial variables (x, y). Homogeneous initial and boundary

conditions will be considered.

2.3 Finite Difference Methods

The finite difference method consists of approximating derivatives via linear combina-

tions of the field in question at given points. Coefficients of these linear combinations

are uniquely determined, as prescribed by related Taylor expansions, by the choice of

field points and the maximum order of approximation. A conventional finite difference

scheme applied to Eq.(2.1) would use field points over a regular grid, the same grid

points for pressure and velocities. In the staggered grid variant, field points for the

pressure and velocity fields are over regular grids such that grid points do not overlap

with each other, i.e., pressure and velocity field points do not coincide. Fig.(2.1) de-

picts the relative location of grid points for the pressure and velocity fields. Note that

the pressure field points reside in what is dubbed as the primary grid, where indexing

pertains to integers, while velocity grid points lie on shifted grids where fractional

indexing is allowed for a particular index.
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pij

(vx)i+ 1
2 j

(vy)i j+ 1
2

Figure 2.1 : Staggered grid points for 2D acoustics.

Space Discretization

Let D
h,(k)
x f(x0) denote the 2kth order centered finite difference approximation of ∂f

∂x

at x0, of step size h as follows:

Dh,(k)
x f(x0) :=

1

h

k∑
n=1

a(k)
n

{
f
(
x0 +

(
n− 1

2

)
h
)
− f

(
x0 −

(
n− 1

2

)
h
)}

.

The coefficients a
(k)
n can be derived by a straightforward Taylor approximation of f

centered at the various points x0± (n− 1
2
)h. The following table includes coefficients

a
(k)
n for k = 1, 2:

n = 1 n = 2

k = 1 1 -
k = 2 1/24 −9/8

Table 2.1 : Table of coefficients for centered finite difference formulas of order k = 1, 2.
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I now give the staggered grid semi-discrete scheme for acoustics of arbitrary 2kth

order:

(ρ)i+ 1
2
j

d

dt
(vx)i+ 1

2
j = −Dh,(k)

x (p)i+ 1
2
j − (fx)i+ 1

2
j, (2.2)

(ρ)i j+ 1
2

d

dt
(vy)i j+ 1

2
= −Dh,(k)

y (p)i j+ 1
2
− (fy)i j+ 1

2
, (2.3)

(β)ij
d

dt
(p)ij = −Dh,(k)

x (vx)ij −Dh,(k)
y (vy)ij + (g)ij, (2.4)

where pij = p(ih, jh). Note that D
h,(k)
x (p)i+ 1

2
j will consist of linear combinations of

(p)i±(n−1) j, that is the pressure field at primal grid points. Similarly, one can show

that any arithmetic resulting from discrete operators in Eq.(2.2) will involve fields in

their respective grid.

Time Discretization

System from Eq.(2.2) is discretized in time by applying a centered difference approx-

imation of the time derivative, again in a staggered manned for the pressure and

velocity fields. The general 2− 2k staggered grid method takes the following form:

(vx)
n+1
i+ 1

2
j

= (vx)
n
i+ 1

2
j

+ ∆t
1

(ρ)i+ 1
2
j

{
−Dh,(k)

x (p)
n+ 1

2

i+ 1
2
j

+ (fx)
n+ 1

2

i+ 1
2
j

}
(2.5)

(vy)
n+1
i j+ 1

2

= (vy)
n
i j+ 1

2
+ ∆t

1

(ρ)i j+ 1
2

{
−Dh,(k)

y (p)
n+ 1

2

i j+ 1
2

+ (fy)
n+ 1

2

i j+ 1
2

}
(2.6)

(p)
n+ 1

2
ij = (p)

n− 1
2

ij + ∆t
1

(β)ij

{
−Dh,(k)

x (vx)
n
ij −Dh,(k)

y (vy)
n
ij + (g)nij

}
, (2.7)

where p
n+ 1

2
ij = p(ih, jh, (n+ 1

2
)∆t).
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2.4 Discontinuous Galerkin Method

In this section I derive the fully discrete DG method applied to the first-order system

given by Eq.(2.1): a DG in space discretization and a Runge-Kutta method in time.

I will use a nodal approach, as described by Hesthaven and Warburton (2007), with

Lagrangian polynomials as basis functions. The derivation provided here is developed

for the general case where the model parameters ρ and κ vary within each element

in the partitioned domain. In particular, I will employ standard strategies from

literature to deal with variable coefficients within DG elements in an efficient manner.

Approximation Space and Basis Functions

Let Th denote a triangulation of Ω into K triangles τ k, i.e., Th = {τ k}Kk=1. I define

the finite dimensional approximation space Uh as follows:

Uh := {vh : vh|τ ∈ PN(τ),∀τ ∈ Th}, (2.8)

where PN(τ) is the space of 2D polynomials of degree up to N restricted to some

triangle τ in the triangulation Th. Thus, Uh is set of piecewise polynomials of order

up to N ∈ N associated with Th.

There are N∗ := 1
2
(N + 1)(N + 2) degrees of freedom associated for each triangle

τ ∈ Th; given τ ∈ Th and a u ∈ Uh, restricted to τ , u|τ can be decomposed into N∗

linearly independent basis functions. A nodal DG method comprises of spanning the

approximation space Uh by nodal basis functions, or equivalently Lagrange polyno-
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mials. Suppose {`kj}N
∗

j=1 is such a nodal basis corresponding to τ k. In order to specify

this basis one would be required to identify a set of N∗ distinct points {xkj}N
∗

j=1 ⊂ τ k

(referred to as nodes) such that `kj (x
k
i ) = δij. It is observed that the relationship

between nodes and nodal basis functions is unique, assuming that the nodes are not

degenerate, yielding a connection between degrees of freedom, basis functions, and

nodes. Hence the number of degrees of freedom is equal to the number of distinct

nodes one must provide in order to specify a particular set of nodal basis functions.

In this thesis I choose the α-optimized nodal set, proposed by Hesthaven and War-

burton (2007). These nodes are computed using a warp and blend technique on the

equidistant conforming node set for some reference equilateral triangle. The space Uh

is thus spanned after specifying the nodal sets {xkj}N
∗

j for each triangle τ k,

Uh =
K⊕
k=1

span{`kj (x)}N∗

j=1, where `kj (x
k
i ) = δij, ∀j = 1, ..., N∗.

Space Discretization

Assume Ω is triangulated into a partition Th, and let ϕ be some test function with the

following properties: supp {ϕ} ⊆ τ and ϕ ∈ C∞(Ω), for some τ ∈ Th. Multiplying

the x-component of Eq.(2.1a) by ϕ and integrating over Ω gives,

∫
τ

ρ
∂vx
∂t

ϕ dx +

∫
τ

∂p

∂x
ϕ dx =

∫
τ

fxϕ dx.
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Integrating by parts and replacing p in the boundary integral with p∗ yields

∫
τ

ρ
∂vx
∂t

ϕ dx−
∫
τ

p
∂ϕ

∂x
dx +

∫
∂τ

n̂xp
∗ϕ dσ =

∫
τ

fxϕ dx,

also referred to as the weak formulation, where n̂x denotes the x-component of the

outward unit vector n̂, normal to ∂τ . The p∗ term is referred to as the numerical flux

of p and plays a vital role in the stability of the method. I will postpone further details

of p∗ to §2.4. Applying integration by parts yet again gives the strong formulation:

∫
τ

ρ
∂vx
∂t

ϕ dx +

∫
τ

∂p

∂x
ϕ dx +

∫
∂τ

n̂x(p
∗ − p)ϕ dσ =

∫
τ

fxϕ dx.

Repeating this process for equations in Eq.(2.1) gives the following system:

∫
τ

ρ
∂vx
∂t

ϕ dx +

∫
τ

∂p

∂x
ϕ dx +

∫
∂τ

n̂x(p
∗ − p)ϕ dσ =

∫
τ

fxϕ dx, (2.9a)∫
τ

ρ
∂vy
∂t

ϕ dx +

∫
τ

∂p

∂y
ϕ dx +

∫
∂τ

n̂y(p
∗ − p)ϕ dσ =

∫
τ

fyϕ dx, (2.9b)∫
τ

β
∂p

∂t
ϕ dx +

∫
τ

(∇ · v)ϕ dx +

∫
∂τ

ϕ(v∗ − v) · n̂ dσ =

∫
τ

gϕ dx, (2.9c)

referred to as the strong formulation for the acoustic equations, with corresponding

numerical flux v∗ for v.

The semi-discrete problem consists of finding ph, vx,h, vy,h ∈ Uh such that Eq.(2.9)

is satisfied for all test functions ϕ ∈ Uh. With the choice of nodal basis functions

{`j}N
∗

j=1, along with a given nodal set {xj}N
∗

j=1 ⊂ τ , the numerical approximations to
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the velocity and pressure fields can be written as linear combinations of the nodal

basis:

vx,h(x, t)|τ =
N∗∑
j=1

(vx,h)j(t)`j(x) (2.10a)

vy,h(x, t)|τ =
N∗∑
j=1

(vy,h)j(t)`j(x) (2.10b)

ph(x, t)|τ =
N∗∑
j=1

(ph)j(t)`j(x) (2.10c)

for each τ ∈ Th, where (vx,h)j, (vy,h)j, (ph)j are unknowns that serve as the coefficients

in the nodal basis expansion. Hence integral terms over τ from Eq.(2.9a), and similarly

for Eq.(2.9b) and Eq.(2.9c), result in computing weighted inner products between basis

functions:

∫
τ

ρ
∂vx,h
∂t

`i dx =
N∗∑
j=1

d

dt
(vx,h)j

∫
τ

ρ`i`j dx, and

∫
τ

∂p

∂x
`i dx =

N∗∑
j=1

(ph)j

∫
τ

`i
∂`j
∂x

dx

where ϕ = `i for i = 1, ..., N∗, in the general case where ρ and β may be varying

within τ .

Now consider the surface integral in Eq.(2.9a) and note that the boundary ∂τ can

be subdivided into integrals over edges e ∈ ∂τ . Thus,

∫
∂τ

n̂x(p
∗
h − ph)`i dσ =

∑
e∈∂τ

∫
e

n̂(e)
x

(
(p

(e)
h )∗ − p(e)

h

)
`i dσ, (2.11)

where the superscript (e) is used to emphasize the dependency on of the fields and



26

n̂x with respect to edge e ∈ ∂τ . The α-optimized nodal set will have N + 1 subsets

of points {xmj}N+1
j=1 located at each edge e by construction. Consequently, vx,h, vy,h,

and ph are uniquely defined on (e) by the N + 1 nodes along with a subset of N + 1

nodal basis functions for to the respective edge. In other words, a subset of the total

element information is required to fully describe terms evaluated at edges, unlike the

case for modal DG where all of the modes are needed. For example, vx,h at edge e,

denoted by v
(e)
x,h, is given by

vx,h(x, t)|e =
N+1∑
j=1

(v
(e)
x,h)mj(t)`

(e)
mj

(x), (2.12)

where (v
(e)
x,h)mj denote the N + 1 subset of nodal coefficients associated with edge e,

with corresponding nodal set {x(e)
mj}N+1

j=1 and basis functions {`(e)
mj}N+1

j=1 .

Conglomerating the results above for the semi-discrete form of Eq.(2.9a) yields

the following:

N∗∑
j=1

d

dt
(vx,h)j

∫
τ

ρ`i`j dx +
N∗∑
j=1

(ph)j

∫
τ

`i
∂`j
∂x

dx

+
∑
e∈∂τ

N+1∑
j=1

n̂x

(
(p

(e)
h )∗ − p(e)

h

)
mj

∫
e

`i`
(e)
mj
dσ =

∫
τ

fx`i dx

(2.13)

for all i = 1, ..., N∗. For a given τ ∈ Th, I define the coefficient vectors in the following

manner,
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vx,h := [(vx,h)1, (vx,h)2, . . . , (vx,h)N∗ ]T , vx,h ∈ RN∗
,

vy,h := [(vy,h)1, (vy,h)2, . . . , (vy,h)N∗ ]T , vy,h ∈ RN∗
,

ph := [(ph)1, (ph)2, . . . , (ph)N∗ ]T , ph ∈ RN∗
,

v
(e)
x,h := [(v

(e)
x,h)m1 , (v

(e)
x,h)m2 , . . . , (v

(e)
x,h)mN+1

]T , v
(e)
x,h ∈ R(N+1),

v
(e)
y,h := [(v

(e)
y,h)m1 , (v

(e)
y,h)m2 , . . . , (v

(e)
y,h)mN+1

]T , v
(e)
y,h ∈ R(N+1),

p
(e)
h := [(ph)

(e)
m1 , (ph)

(e)
m2 , . . . , (ph)

(e)
mN+1 ]

T , p
(e)
h ∈ R(N+1),

v
(e)
n,h := n̂xv

(e)
x,h + n̂yv

(e)
y,h.

With this notation I write the matrix form of Eq.(2.13),

M [ρ]
d

dt
vx,h + Sxph +

∑
e∈∂τ

n̂xM
(e)
(

(p
(e)
h )∗ − p

(e)
h

)
= fx

where the local weighted mass matrices M [ρ] and mass matrix M (e), x-stiffness matrix

Sx, and right-hand-side vector fx are given below:

M [ρ]ij :=

∫
τ

ρ`i`j dx, M ∈ RN∗×N∗
,

M
(e)
ij :=

∫
e

`
(e)
i `(e)

mj
dσ, M (e) ∈ RN∗×(N+1),

Sxij :=

∫
τ

`i
∂`j
∂x

dx, Sx ∈ RN∗×N∗
,

fxi :=

∫
τ

fx`i dx, fx ∈ RN∗
.
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A similar approach is taken for Eq.(2.9b) and Eq.(2.9c):

M [ρ]
d

dt
vy,h + Syph +

∑
e∈∂τ

n̂yM
(e)
(

(p
(e)
h )∗ − p

(e)
h

)
= fy,

M [β]
d

dt
ph + Sxvx,h + Syvy,h +

∑
e∈∂τ

M (e)
(

(v
(e)
n,h)

∗ − v
(e)
n,h

)
= g,

where the local weighted mass matrix M [β], y-stiffness matrix Sy, and the right-

hand-side vectors fy,g are given below:

M [β]i,j :=

∫
τ

β`i`j dx, M [β] ∈ RN∗×N∗
,

Syi,j :=

∫
τ

`i
∂`j
∂y

dx, Sy ∈ RN∗×N∗
,

fyi :=

∫
τ

fy`i dx, fy ∈ RN∗
,

gi :=

∫
τ

g`i dx, g ∈ RN∗
.

Finally the explicit semi-discrete DG scheme is given in the following system of ODE’s:

d

dt
vx,h = −Dx[1

ρ
]ph −

∑
e∈∂τ

n̂xL
(e)[1

ρ
]
(

(p
(e)
h )∗ − p

(e)
h

)
+ F x[1

ρ
] (2.14a)

d

dt
vy,h = −Dy[1

ρ
]ph −

∑
e∈∂τ

n̂yL
(e)[1

ρ
]
(

(p
(e)
h )∗ − p

(e)
h

)
+ F y[1

ρ
] (2.14b)

d

dt
ph = −Dx[ 1

β
]vx,h −Dy[ 1

β
]vy,h −

∑
e∈∂τ

L(e)[ 1
β
]
(

(v
(e)
n,h)

∗ − v
(e)
n,h

)
+G[ 1

β
] (2.14c)

where
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Dα[ 1
ω

] := M [ω]−1Sα,

L(e)[ 1
ω

] := M [ω]−1M (e),

Fα[ 1
ω

] := M [ω]−1fα,

G[ 1
ω

] := M [ω]−1g,

are the DG operators weighted by some general function ω, where ω in this context

is either ρ or β, and α ∈ {x, y}.

Handling Variable Coefficients

The derivation of the semi-discrete scheme given by Eq.(2.14) was carried out under

the general assumption of varying acoustic coefficients ρ and β within DG elements,

hence resulting in weighted operators Dα[ 1
ω

], L(e)[ 1
ω

]. The efficiency and accuracy in

computing these weighted operators will no doubt affect the computation time of the

overall DG method. Common DG schemes will assume that physical coefficients can

be considered constant within elements, leading to a piecewise constant representa-

tion of the medium. An alternative would be to carry out the actual integration via

quadrature rules, leading to an increase in accuracy though at some cost. For com-

pleteness I have implemented both variations of the DG scheme given in Eq.(2.14)

based on quadrature-free and quadrature based computations of weighted operators

which I briefly discuss subsequently.
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The first approach consists of assuming that ρ and β are constant within ele-

ments τ ∈ Th. In particular for smoothly varying media, as done in finite volume

methods (LeVeque, 2002), I will take a homogenization approach and use the average

of the coefficients over τ as the representative constant,

ρ
∣∣
τ
≈ ρ̄τ ≡

1

|τ |

∫
τ

ρ(x) dx, (2.15a)

β
∣∣
τ
≈ β̄τ ≡

1

|τ |

∫
τ

β(x) x, (2.15b)

denoting the averages of ρ and β over τ . With this approach, local operators from

Eq.(2.14) take a simplified form:

Dα[ 1
ω

] =
1

ω̄τ
M−1Sα,

L(e)[ 1
ω

] =
1

ω̄τ
M−1M (e),

Fα[ 1
ω

] =
1

ω̄τ
M−1fα,

G[ 1
ω

] =
1

ω̄τ
M−1g,

where M ≡M [1] is the standard unweighted mass matrix on τ .

Standard mass matrices M and M (e), and stiffness matrices Sα for α ∈ {x, y},

consist of evaluating inner products between basis functions of the following form:
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∫
τ

`i`j dx,

∫
e

`i`mj dσ,

∫
τ

`i
∂`j
∂α

dx.

These integrals can be related via an affine map Ψ : τ → τ̂ , with (x, y) 7→ (x̂, ŷ), to

integrals on some reference triangle τ̂ and reference edge ê, i.e.,

J(τ)

∫
τ̂

ˆ̀
i
ˆ̀
j dx̂, J(e)

∫
ê

ˆ̀
i
ˆ̀
mj dσ̂, J(τ)

∫
τ̂

ˆ̀
i

(
∂x̂

∂α

∂

∂x̂
+
∂ŷ

∂α

∂

∂ŷ

)
ˆ̀
j dx̂, (2.16)

where J(·) is the Jacobian of transformation between τ → τ̂ or e → ê, and {ˆ̀i}N
∗

i=1

are the basis functions for the space PN(τ̂). Consequently, it suffices to store scalar

transformation factors J(τ), J(e), and scalar geometric factors ∂x̂
∂α
, ∂ŷ
∂α

for each τ and

one copy of reference operators resulting from inner products on reference elements

given in Eq.(2.16). Computing the element-wise operators will thus consist of linear

combinations of the reference operators as hinted by Eq.(2.16), as oppose to having to

compute integrals for each element. Hesthaven and Warburton (2007) give a detailed

account of the approach used in this thesis for computing and assembling in an efficient

manner, along with a quadrature free implementation, of the reference mass and

stiffness matrices and transformation factors.

The homogenization step in the method sketched above, in which the medium

is effectively approximated by a carefully chosen piecewise constant analog, is in-

strumental to an efficient quadrature-free implementation of the DG method. The

accuracy of this approach thus rests in part with how well the wave response of the
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homogenized medium approximates wave propagation in the true medium. Two lim-

iting factors to this homogenization approach include: the size of elements τ , and the

variability and complexity of the medium. Intuitively, higher accuracy in complicated

media can be achieved by naively decreasing the size of elements τ , indeed the only

option there is if one is to maintain a quadrature-free implementation.

A natural alternative to the first approach is a quadrature based implementation,

and thus the second approach considered in this thesis. Quadrature rules accurate

up to polynomials of order 2N + Nω, where Nω is extra precision imposed on the

numerical integration to account for the weighting factor ω, are used to compute the

weighted integrals ∫
τ

ω`i`j dx.

This quadrature based approach is thus more accurate since it does not suffer from

approximation errors, aside from numerical integration, that are of issue for the first

approach. As is common, higher accuracy comes at a price, in particular having to

store each of the weighted operators for each element. For example, suppose there are

K elements, then the amount of memory needed to store all of the weighted operators

is

K ×
(
sizeof(Dx) + sizeof(Dy) + 3 ∗ sizeof(L(e))

)
= K ×N∗ ×

(
2N∗ + 3(N + 1)

)
= O(KN4)
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modulus sizeof(float). This is contrasted with

K ×
(
sizeof(J(τ)) + 3 ∗ sizeof(J(e)) + 2 ∗ sizeof(geo.fac.)

)
+sizeof(M) + 2 ∗ sizeof(Sα)

= 6K + 3N∗ ×N∗

= O(K +N4)

for the quadrature-free approach.

Numerical Fluxes

The numerical flux terms p∗ and v∗ in Eq.(2.9), and consequently in the semi-discrete

DG scheme Eq.(2.14), can be interpreted as the means through which information

between elements is propagated. These flux terms more importantly play a crucial

role in the numerical stability of the method. In particular, with regards to hyperbolic

problems where energy is conserved, the flux terms essentially restrict the discrete

energy analog from growing over time through dissipative or conservative mecha-

nisms. Consequently flux terms also have an impact in the methods accuracy, e.g.,

convergence rates, dissipation and dispersion properties. The choice of flux is not

unique and continuous to be a topic of interest; see Cockburn (2003) for an accessible

overview of DG methods including an excellent discussion on numerical fluxes. In this

subsection I will give an overview of the derivation, stemming from Riemann solvers,

of the flux terms used for the DG method considered in this thesis. A complete exposé
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of this derivation, and a more in depth discussion on Riemann solvers can be found

in LeVeque (2002), within the context of finite volume methods.

The acoustic equations in Eq.(2.1) can be reformulated in matrix-vector notation

as follows:

Q
∂q

∂t
+Ax

∂q

∂x
+Ay

∂q

∂y
= s̃

where

Q =


ρ 0 0

0 ρ 0

0 0 β

 , Ax =


0 0 1

0 0 0

1 0 0

 , Ay =


0 0 0

0 0 1

0 1 0

 ,

and

q =


vx

vy

p

 , s̃ =


fx

fy

g

 .

Define the operator Π = n̂xAx + n̂yAy, and note that

Q−1Πq =


1
ρ
n̂xp

1
ρ
n̂yp

1
β
n̂ · v


corresponds to the integrands in the surface integrals of Eq.(2.9), i.e., the flux terms.

One can show that the eigenvalues of Q−1Π are given by {−c, 0, c}, where c = 1/
√
ρβ

is the acoustic wave velocity.



35

The Riemann solver provides a solution to the case where an acoustic wave travels

between two media with constant and differing coefficients ρ and β. A jump disconti-

nuity in the wave field occurs when the incident wave travels through the two media,

from which two smooth wave fields, a reflected and transmitted wave, originate and

propagate with appropriate velocities. The intermediate wave field that exhibits the

jump discontinuity at the interface of the boundary between the two media is what

will be used as the flux term for the DG formulation.

Let Q− and Q+ denote the coefficient matrices for the two media and similarly

let q− and q+ denote the respective states. The Riemann jump conditions state that

intermediate states q∗ and q∗∗ must satisfy the following relations between q+ and

q−,

c−Q−(q∗ − q−) + (Πq)∗ − (Πq)− = 0

(Πq)∗∗ − (Πq)∗ = 0

−c+Q+(q∗∗ − q+) + (Πq)∗∗ − (Πq)+ = 0

With some algebraic manipulation one can derive the following formulas for the in-

termediate states p∗ and v∗:

p∗ =
Z−p+ + Z+p−

Z− + Z+
− Z−Z+

Z− + Z+
n̂ · (v+ − v−) (2.17a)

v∗ =
Z−v− + Z+v+

Z− + Z+
− 1

Z− + Z+
n̂(p+ − p−) (2.17b)

where Z =
√
ρ/β is the acoustic impedance.
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Consider a triangulation T of the domain Ω, and let τ ∈ T . For some field q de-

fined on Ω, the ‘−’ and ‘+’ superscripts refer to the inner and outer trace, respectively,

of q at ∂τ with respect to τ . In other words,

q+(x) = lim
ε→0

q(x + εn̂) and q−(x) = lim
ε→0

q(x− εn̂)

for x ∈ ∂τ , and n̂ is the unit vector normal and outward to ∂τ . The numerical flux

terms (p∗−p−) and (v∗−v−) that appear in the surface integrals in Eq.(2.9) are given

as follows, when taking p∗ and v∗ to be the intermediate states from the Riemann

jump conditions in Eq.(2.17):

p∗ − p− =
Z−

2〈〈Z〉〉

(
αZ+n̂ · JvK− JpK

)
(2.18a)

v∗ − v− =
Y −

2〈〈Y 〉〉

(
αY +n̂JpK− JvK

)
(2.18b)

with

〈〈q〉〉 =
q− + q+

2
and JqK = q− − q+

and acoustic conductance Y = 1/Z. The auxiliary variable α controls the amount

of dissipation of the numerical flux and takes values in [0, 1]; e.g., α = 0 and α = 1

correspond to a non-dissipative central flux and a dissipative upwind flux respectively.
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In the case where τ has an edge on ∂Ω, the exterior values are extended by taking

p+ = −p− and v+ = v−,

for the free surface boundary condition p = 0 at ∂Ω.

Perfectly Matched Layer Implementation

The physical region modeled in seismology applications corresponds to a small window

view of the Earth, essentially an unbounded medium. The simplest manner in which

to mimic an unbounded medium numerically would be to extend the computational

domain such that the boundary effects (depending on what boundary conditions are

considered) will not reach the region of interest at the end of the simulation time.

Though simple to implement, this naive computational domain extension trick is

rather expensive and inefficient, i.e., one ends up computing fields at a considerable

amount of unnecessary points. The perfectly matched layer (PML) is a popular tech-

nique for simulating wave propagation through an unbounded domain. The method

of PMLs was first developed in the context of electromagnetic wave propagation in

free space by Berenger (1994). The idea consist of appending a lossy layer around

your physical domain with the following properties:

1. there should be no reflected waves between the PML and the physical domain,

2. and the wave should decay exponentially within the PML.
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Computationally, the PML method amounts to solving for auxiliary fields and auxil-

iary PDEs or ODEs, specifics depending on construction and implementation. I have

implemented the PML construction derived by Abarbanel and Gottlieb (1998), where

the PML equations take form of an inhomogeneous damped acoustic wave equation

in first order form augmented by a set of auxiliary ODEs:

ρ
∂vx
∂t

+
∂p

∂x
= fx + ρηx(Px − 2vx) (2.19a)

ρ
∂vy
∂t

+
∂p

∂y
= fy + ρηy(Py − 2vy) (2.19b)

β
∂p

∂t
+∇ · v = g − β∂ηx

∂x
Qx − β

∂ηy
∂y

Qy (2.19c)

∂Px
∂t

+ ηxvx = 0 (2.20a)

∂Py
∂t

+ ηyvy = 0 (2.20b)

β
∂Qx

∂t
+ βηxQx = vx (2.20c)

β
∂Qy

∂t
+ βηyQy = vy (2.20d)

where Px, Py, Qx and Qy are the auxiliary fields and ηx and ηy are the PML coefficients

given by the following equations (for a domain setup similar to Fig.(2.2)):
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ηα(x, y) =



ηαmax

[
Lα
2

+ α

dα

]2

, α ∈ [−dα − Lα
2
,−Lα

2
]

0 , α ∈ (−Lα
2
, Lα

2
)

ηαmax

[
Lα
2
− α
dα

]2

, α ∈ [Lα
2
, Lα

2
+ dα]

(2.21)

for α ∈ {x, y}. PML constants ηαmax and dα denote the PML amplitude and layer

widths.

(0, 0)

Lx

Ly

dy

dx

Figure 2.2 : Schematic of physical domain and PML.



40

Time Discretization

A member of the Runge-Kutta (RK) discretization family, the low-storage five-stage

fourth-order explicit RK method, is used to discretize in time the system of ODE’s

in Eq.(2.14).



41

Chapter 3

Numerical Experiments and Results

3.1 Introduction

This chapter elaborates on the setup and results of numerical experiments carried out.

FD and DG methods are tested for several different smooth models: homogeneous,

linear-in-depth, and negative-lens velocity models with constant density. Lastly for

the sake of completeness, a medium with a dip discontinuity and a mixture of linear-

in-depth and negative lens velocity models is tested. In application, the velocity and

density coefficients are given at spatial points corresponding to a uniform grid, from

which one would have to interpolate for coefficients at points required by the solver.

This process is idealized in that coefficients are given by some analytical formula and

hence can be computed at any desired point without worrying about interpolation

error.

The DG code was implemented in Matlab and is based off of code from Hesthaven

and Warburton (2007), while the FD solver is taken from IWAVE (Symes et al., 2009)

which is written in C and C++. Computations carried out on a personal laptop with

the following specifications: 2.9GHz dual-core Intel Core i7 processor (Turbo Boost

up to 3.6GHz) with 4MB L3 cache, and 8GB of 1600MHz DDR3 memory. I emphasize



42

that there was no attempt to parallelize the DG code since it was written in Matlab,

out of simplicity, which will of course limit any type of comparison between FD

and DG. Further discussion on the choices of implementation and its effect on this

comparison will be discussed in the last chapter. Nonetheless, FLOP counts will be

used to determine in a more software/hardware independent manner a metric for

computational costs per method given a prescribed accuracy. In this thesis FLOPs

are counted in an algorithmic manner taking into consideration PML regions, since

they contribute in a significant manner the total number of operations computed.

Throughout the numerical experiments discussed below I will be considering a

source function that is a Ricker wavelet in time and some smooth approximation to

the delta function in space, see Appendix-A for more detail. The choice of Ricker in

time, with a central frequency of 10Hz, is common in computational seismology for

seismic imaging. Moreover, an isotropic point source serves as an “approximation”

to explosive sources, a reasonable heuristic given the length scale of the survey re-

gion versus the volume where the explosion takes place. In practice the numerical

representation of singularities is of course nontrivial, in particular within the context

of finite difference methods. Though methodology for discretizing singular sources

does exist (e.g., Petersson and Sjögreen (2010)), I have decided in replacing δ(x) with

a smooth non-singular alternative of bounded support, thus relieving this study of

complications due to discretizing singularities.

I point out that my numerically tractive source term has unintentionally resulted
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in complicating the analytics of the problem. In other words writing an analytical

solution to the acoustic equations Eq.(2.1) is at best difficult even in the simplest case

of a homogeneous media for the type of source considered here. Customary practice

dictates the use of highly discretized numerical solutions as the “true solution” when

analytical ones are not easily available. A highly discretized 2-4 FD solution will be

considered as the “true solution” in the subsequent test cases.

3.2 Defining Errors

The end goal of seismic simulators, at least in the context of seismic imaging, is to

produce accurate seismic traces given information about the medium. Seismic traces

are simply time series of the pressure field p evaluated at some spatial points xr related

to the location of receivers in the application. Hence, it will suffice to consider p(xr, t)

for some xr ∈ Ω and t ∈ [0, T ] while computing errors.

As alluded in the introduction of this chapter, errors will be measured relative to

a highly discretized numerical solution. In particular, the FD 2-4 method with grid

size of dx = dy = 0.5 m is used as the “true solution” when measuring error for all

subsequent numerical experiments. Given a numerical solution ph, the relative error

at a specified spatial point xr is denoted by Eh(xr);

Eh(xr) =
‖ph(xr, ·)− p(xr, ·)‖

‖p(xr, ·)‖
,
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where p will denote the “true solution” and ‖ · ‖ is as defined by

‖ph(xr, ·)‖ =

√√√√ N∑
n=0

|ph(xr, ti)|2. (3.1)

The following are accuracy conditions imposed on all preceding FLOP and com-

putation time comparisons:

RMS
xr

Eh(xr) < 5% (3.2)

max
xr

Eh(xr) < 6% (3.3)

I emphasize that this choice of accuracy conditions is somewhat arbitrary though

justifiable and derived from engineering practices. The RMS error provides a rough

average of the error while the max error criterion limits the maximum worst observed

variability of the error. Mesh/grid size h, along with time steps, are chosen such that

the accuracy criterion is met while attempting to minimize runtime.

3.3 Convergence Rates

Prior to carrying out numerical experiments for the comparison of FD and DG meth-

ods, a numerical convergence rate analysis is considered as a means of validating the

correctness of the implemented methods. Let p denote the true solution to the acous-

tic equations, for some specified boundary conditions and domain Ω. The numerical

solution will be denoted by ph, where the subscript h emphasizes the dependency of

the solution ph on the mesh/grid size. Suppose that ph was computed via a numerical
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method with a convergence rate of R > 0, i.e.,

ph = p+ ChR +O(hR+1).

Taking the ratio of the difference of numerical solutions for h, h/2, h/4 can yield an

approximation to the convergence rate R as follows:

ph − ph/2
ph/2 − ph/4

=
ChR − C(h/2)R +O(hR+1)

C(h/2)R − C(h/4)R +O(hR+1)

=
1− 2−R +O(h)

2−R − 4−R +O(h)

= 2R +O(h)

=⇒ R ≈ log2

(
ph − ph/2
ph/2 − ph/4

)
. (3.4)

The convergence rates are computed by taking the `2-norm in time of the differences

in Eq.(3.4), for a specified receiver location xr:

R(xr) = log2

(
‖ph(xr, ·)− ph/2(xr, ·)‖
‖ph/2(xr, ·)− ph/4(xr, ·)‖

)
.

The numerical pressure fields for this convergence analysis are computed by solv-

ing the acoustic equations in a homogeneous density and velocity medium∗: ρ =

∗Velocity as a property of the medium, denoted by c, is related to κ (or β) and ρ by (κ/ρ)1/2 =
(κβ)−1/2 = c. Computations with regards to the DG method will indeed involve compressibility β,
however it is more intuitive and qualitative to show the velocity of the medium, as done throughout
this chapter.
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2.3 g/cm3, and c = 3 km/s. Physical domain Ω is shown in Fig. (3.1a), along

with receiver locations xr and source configuration. A PML boundary is also shown

Fig.(3.1a), effectively simulating an unbounded medium†. A sample of the structured

triangular meshes considered here is shown in Fig.(3.1b).

Numerical convergence ratesR(xr) are plotted in Fig.(3.2) for FD and DG methods

respectively. Special care was taken to suppress second order errors stemming from

the time derivative methods considered for the FD schemes by choosing a small enough

time step.

FD 2-2 FD 2-4 DG N=2 DG N=4
RMS R(xr) 2.076 3.844 1.398 3.971

Table 3.1 : RMS with respect to xr for convergence rates R(xr).

3.4 Homogenous Test Case

The first test case considered here is that of the homogeneous medium, with ρ =

2.3 g/cm3 and c = 3 km/s. Physical setup of the numerical experiment in shown

in Fig.(3.3a). Note that the physical region consists of the rectangular section Ω =

[0 m, 400 m] × [0 m, 1200 m], where regions to the left of 0 m and right of 400 m

with respect to the horizontal axis correspond to PML regions, absorbing any waves

propagating outside of Ω. Furthermore, free surface boundary conditions are applied

for boundaries at depths 0 m and 1200 m. The setup depicted in Fig.(3.3a) was

†PML widths and configurations will be model and method dependent.
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(a) Experimental setup. (b) Sample mesh on domain.

Figure 3.1 : Setup and sample structured mesh for convergence rate test.

(a) R(xr) for FD methods. (b) R(xr) for DG methods.

Figure 3.2 : Convergence rates for numerical methods at points xr.
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constructed in order for receivers to measure the propagation of the initial wave over

several wavelengths. In fact, due to the constant medium velocity of 3 km/s and

a Ricker wavelet with central frequency of 10 Hz, it follows that the receivers at

the depth of 600 m will measured up to 5 wavelengths (5 × 300 = 1500 m) of wave

propagation.

Relative errors as functions of horizontal displacement are plotted for both FD

and DG methods in Fig.(3.4). Simulations were carried out as to yield computed ph

that satisfy accuracy conditions Eq.(3.2) and Eq.(3.3). Table 3.2 provides a summary

overview of the performances for FD and DG methods. Grid points per wavelength

(GPW) is computed as cmin/(fpeakh) for FD methods, while cmin/(fpeakhN) gives an

approximate analog for DG methods. Tables in Appendix B include more information

about the discretization and computed relative errors for this and all test cases.

Overall, FD methods yield GFLOP counts that are 150 to 25 times smaller than that

of the DG methods. Further discussion and comparison of computational efficiency

between DG and FD is reserved to the conclusion chapter.

dt [ms] GPW GFLOPs
FD 2-2 0.9546 50 0.55
FD 2-4 1.6122 25 0.12

DG N=2 1.2032 15 14.28
DG N=4 1.2058 15 17.99

Table 3.2 : Results for homogeneous test case.
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(a) Experimental setup. (b) Traces of highly discretized numerical solution.

Figure 3.3 : Experimental setup and traces for homogeneous test case.

(a) Relative errors for FD. (b) Relative error for DG.

Figure 3.4 : Relative errors for homogeneous model.
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3.5 Linear-in-Depth Velocity Test Case

The following test case compares the performance of FD and DG methods on a slowly

varying medium: consttant density and linearly varying velocity in depth medium,

as shown in Fig.(3.5a). The receiver-source setup used here is similar to that of the

homogeneous test case. Seismic traces for the highly discretized FD 2-4 method are

shown in Fig.(3.5b).

Several combinations of different DG implementations are considered for this test

case: mainly quadrature-free and quadrature based DG implementations with and

without mesh refinement options. Mesh refinement is applied in regions of lower ve-

locity where waves, as they propagate through such regions, their wavelength decrease

dictated by the relationship between frequency f , velocity c and wavelength λ:

c = λf. (3.5)

The stability and accuracy of FD and DG methods in fact depend on how finely

discretized the method is with respect to all of the quantitates present in Eq.(3.5).

In particular regions of lower velocity will need to be discretized at a finer level than

other regions. This study will follow that heuristic and apply mesh refinement for

such regions in variable media.

The use of quadrature based versus quadrature-free DG will of course be im-

portant to this and the following test case where coefficients β and ρ vary within
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triangular elements. Moreover, the impact in overall accuracy and computation cost

will notably depend on the mesh and, if any, mesh refinement. Exemplary meshes,

with and without refinement, are shown in Fig.(3.6) and Fig.(3.7) along with their

corresponding piecewise constant approximations to the variable velocity model in

the case of quadrature-free DG.

Relative errors and their variability across receiver locations is shown in Fig.(3.8)

for all methods, including combinations of DG implementations dealing with variable

media. Among the DG methods, and their variable implementations, it is observed

that lower oder methods and implementations with mesh refinement seem to exhibit

higher variations in errors for the most part. Note that Table 3.3 includes runtimes

for DG methods, this is done in order to make comparisons between quadrature-free

and quadrature based methods, as well as mesh refinement options.The following are

some observations summarized in Table 3.3:

• FD GFLOP count is again roughly between 192 to 9 times smaller than DG;

• the DG method with fastest runtimes has a GFLOP counter of roughly 175

times that of the 2-4 FD method;

• quadrature-free DG resulted in faster runtimes;

• mesh refinement provide some decrease in runtimes;

• among DG methods, the N = 4 quadrature-free (with or without mesh refine-

ment) implementation yielded the smaller runtimes.
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dt [ms] GPW GFLOPs Runtime [s]
FD 2-2 0.4679 33.3 1.1358 -
FD 2-4 1.5563 16.6 0.1261 -
no mesh ref.
DG N=2, Q-free 1.2232 10 16.16 1.85 E+3
DG N=2, with Q 1.2232 10 11.82 3.79 E+3
DG N=4, Q-free 1.3327 10 22.03 1.17 E+3
DG N=4, with Q 0.9281 6.6 11.86 1.35 E+3
mesh ref.
DG N=2, Q-free 1.1631 10 13.52 1.77 E+3
DG N=2, with Q 1.2032 10 9.66 3.08 E+3
DG N=4, Q-free 1.2271 10.6 24.22 1.17 E+3
DG N=4, with Q 0.8686 8 11.56 1.39 E+3

Table 3.3 : Results for linear-in-depth velocity test case.
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(a) Velocity model and experimental setup. (b) Seismic traces of highly discretized numerical solution.

Figure 3.5 : Experimental setup and traces for linear-in-depth velocity test case.
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(a) Piecewise constant approximation. (b) Corresponding structured mesh.

Figure 3.6 : Piecewise approximation of velocity model and corresponding mesh, with
no mesh refinement.

(a) Piecewise constant approximation. (b) Corresponding structured mesh, with refinement.

Figure 3.7 : Piecewise approximation of linear-in-depth velocity model and corre-
sponding mesh, with mesh refinement.
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(a) FD errors

(b) quadrature-free DG (c) quadrature based DG

(d) quadrature-free DG, with mesh refinement (e) quadrature based DG, with mesh refinement

Figure 3.8 : Relative errors for linear-in-depth velocity model.
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3.6 Negative-Lens Test Case

The final test case studied here is that of the negative-lens velocity model with con-

stant density. Fig.(3.9a) depicts the receiver-source configuration along with the ve-

locity model, with computed seismic traces shown in Fig.(3.9b). Moreover, Fig.(3.10)

and Fig.(3.11) illustrate some examples of piecewise approximations of the medium

along with their meshes, with and without mesh refinement. Errors are plotted in

Fig. (3.12) while Table 3.4 summarize performance of the different methods. The

following are some note worthy remarks of the results accumulated for this test case:

• FD GLFOP counts are over 1219 to 5.7 times smaller than that of DG methods;

• the best performing DG scheme has a GFLOP count of 189 times the GFLOP

count of 2-4 FD;

• among DG methods, the N = 4 with quadrature and mesh refinement result in

the faster runtimes;

• overall, quadrature based implementations resulted in the use of larger mesh

size h and a decrease in runtime;

• mesh refinement have yielded significant reductions in runtime.
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dt [ms] GPW GFLOPs Runtime [sec]
FD 2-2 0.8379 33.3 0.6296 -
FD 2-4 1.5645 13.3 0.0820 -
no mesh ref.
DG N=2, Q-free 1.0027 10 19.72 2.16 E+3
DG N=2, with Q 0.9625 6.6 7.72 2.51 E+3
DG N=4, Q-free 0.6545 16 99.92 2.58 E+3
DG N=4, with Q 1.1994 10 19.99 1.54 E+3
mesh ref.
DG N=2, Q-free 0.9826 10 7.44 1.33 E+3
DG N=2, with Q 0.8523 8 3.61 1.69 E+3
DG N=4, Q-free 0.6545 16 32.19 1.57 E+3
DG N=4, with Q 1.2048 10.6 8.29 1.09 E+3

Table 3.4 : Results for negative-lens test case.
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(a) Velocity model and experimental setup. (b) Seismic traces of highly discretized numerical solution.

Figure 3.9 : Experimental setup and traces for negative-lens test case.
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(a) Piecewise constant approximation. (b) Corresponding structured mesh.

Figure 3.10 : Piecewise approximation of negative-lens velocity model and corre-
sponding mesh, with no mesh refinement.



58

(a) Piecewise constant approximation. (b) Corresponding structured mesh,
with refinement.

Figure 3.11 : Piecewise approximation of negative-lens velocity model and corre-
sponding mesh, with mesh refinement.
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(a) FD errors

(b) quadrature-free DG (c) quadrature based DG

(d) quadrature-free DG, with mesh refinement (e) quadrature based DG, with mesh refinement

Figure 3.12 : Relative errors for negative-lens velocity model.
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3.7 Mixed Test Case

The last test case considered is that of a mixed model with a dip discontinuity,

incorporating both the linear-in-depth and lens models, see Fig.(3.13a). The pressure

wave recorded resulting from the direct source, also known as the direct wave, is

ignored when computing error for this particular test case by truncating the first 250

ms of the trace data. Essentially the direct wave data is discarded allowing for a

comparison that is more sensitive to the reflections and refractions induced by the

medium. The traces in Fig. (3.13b) illustrates these recorded reflections from the

dip discontinuity, refracted waves from the negative lens, and multiple reflections

between the free surface and layered dip discontinuity. Only one DG implementation

is used for this test case, based on results from the previous test cases: polynomial

order N = 4, quadrature based, with mesh refinement. Relative errors are plotted in

Fig.(3.14), and overall performance is summarized in Table 3.5. Overall, DG GFLOP

count is roughly 33 to 18 times greater than that of the FD schemes.

dt [ms] GPW GFLOPs
FD 2-2 0.74246 33.3 1.4308
FD 2-4 1.1300 25 0.7793

DG 1.0375 14.2 25.68

Table 3.5 : Results for mixed test case.
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Ω

PML

(a) Velocity model and experimental setup. (b) Seismic traces of highly discretized FD solution.

Figure 3.13 : Experimental setup and traces for mixed model test case.

Figure 3.14 : Relative errors for mixed velocity model.
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Chapter 4

Conclusion

The purpose of this thesis work is to provide a first attempt at a comparison between

FD and DG methods in the context of seismic imaging, particularly in acoustics with

smoothly varying medium. Recent works demonstrate the efficiency and advantages

of DG over FD methods when considering discontinuous media, that is piecewise con-

stant media (Wang (2009), Wang et al. (2010), Zhebel et al. (2013)). It has been DG’s

geometric flexibility, allowing for mesh alignment with discontinuous interfaces, and

high parallelism that have propelled DG as a strong competitor in seismic imaging.

On the other hand, gradual variations in physical parameters are indeed physical

and observed in nature as well as relevant to the inversion process. My thesis in-

corporates established methodology for dealing with variable media within DG via

efficient quadrature-free, and accurate quadrature based, implementations. Further-

more the use of mesh refinement is also considered in order to efficiently tackle the

difficulties encountered in variable media, i.e., low velocity regions that require higher

discretization.

Results reported here are of course preliminary, in that the DG code was imple-

mented in Matlab while the FD code was written in C. Moreover, no attempt was

made to parallelize the code at the moment, though this will be a natural extension
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for future directions. All methods were subject to accuracy conditions Eq.(3.2) and

Eq.(3.3), where the RMS and maximum relative error must be roughly less than 5%

and 6% respectively, from which GFLOP counts were recorded to provide some mea-

surement of computational cost and efficiency. Table 4.1 condenses the results from

Chapter 3 into GFLOP ratios for the DG methods with best runtimes, relative to

FD GFLOP counts for the test cases discussed. Results over the various test cases

show that FD vastly outperforms DG. This was to be expected especially for the

smooth media test cases. However not all hope is lost, as the mixed medium test

case demonstrates a 33 fold difference in GFLOPS between DG and FD, the smallest

difference observed amongst DG implementations with the best running times. This

suggests that DG may have a chance to compete with FD under complex media with

perhaps localized low velocity zones and where the geometry of the discontinuity is

sufficiently relevant, under an HPC implementation framework.

Computational runtime is without a doubt one of the most important forms of

measuring computational cost, especially for an industry that deals with enormous

amounts of data such as the energy industry. The relation between the amount of

work done by a computer, measured in FLOPs here, and computational runtime can

be dubious since it depends highly on so many factors such as software, hardware,

algorithmic design, and their codependence. Despite this, I argue that some simpli-

fied back-of-the-envelope calculations can provide some insight into the computational

runtime and thus validate the use of FLOPs in this study. Zhou (2014) showed that
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20% ∼ 30% of peak performance can be achieved for similar FD methods via vec-

torization and cache optimization on a Sandy Bridge Xeon E5-2660 processor. Using

Zhou’s results, I can provide a comparison of the runtimes for FD and DG methods

based on their FLOP counts. Let TFD and TDG denote the computational running

time of some FD and DG method, and let X and Y denote the total GFLOP count

and peak performance rate respectively. Thus, assuming a 20% peak performance for

the FD method, the running time TFD can be estimated to be

TFD =
X

0.2Y
.

Consider the case where the DG method at hand has a peak performance of ε ∈ (0, 1]

and a total GFLOP count of 33X, corresponding to the mixed test case. The ratio

between DG and FD runtime is given as follows:

TDG/TFD =
33X

εY

/ X

0.2Y
=

6.6

ε
≤ 6.6.

In other words, the GFLOP discrepancy between FD and DG is too great for DG

to overcome by shear computational efficiency, considering smooth media keeping in

mind the choice of accuracy defined here. Despite FD’s dominance in these test cases,

I would argue that results shown here offer some insight into the application of DG

in general when considering variable media, discontinuous or not.
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hom. linear lens mixed
GFLOP ratio 150 175 101 33

Table 4.1 : Approximate GFLOP ratios between best of DG over FD, for each test
case.

It was observed in the linear-in-depth velocity model that mesh refinement offered

little alleviation in computational cost, while in the negative-lens test case refine-

ment offered a clear reduction in run time as well as GFLOPs. The nature of the

medium, that is a slowly varying medium versus another medium with a more lo-

calized anomaly, indeed played a role in how suitable mesh refinement can be. I

personally attribute the lack of benefit in mesh refinement to my crude refinement

algorithm, where elements are effectively refined from h to h/2. Perhaps an unstruc-

tured mesh with a more incremental refining algorithm could have produced better

results.

More importantly, the use of quadrature for computing DG operators leads to

overall less GFLOPs than the quadrature-free implementation. Chapter 2 hinted at

the low memory storage properties of quadrature-free DG where reference operators,

along with geometric factors, are required throughout calculations. This of course

came at the price of having to partially recompute DG operators on the fly for each

time step, hence the higher FLOP count as shown for all test cases. The efficiency of

quadrature-free DG stems from the fact that it is faster to carrying out computations

as oppose to making memory calls; it is faster to partially recompute operators than

call them from memory. All in all, the efficiency of quadrature-free DG hinges on the
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assumption that the physical medium is well approximated by some mesh-dependent

piecewise constant analogue. Results show overall that smaller, or equal∗, sized mesh

elements are required in order maintain desired accuracy. Note that for the linear-in-

depth velocity test case, quadrature-free implementations did in fact achieve reduced

runtimes relative to their quadrature based counterparts. On the other hand, the

negative-lens test case reveals the benefit of quadrature based implementation espe-

cially for higher order methods, due to the localized nature of the lens and its higher

variability within mesh elements.

This work, along with complementary research on FD versus DG in discontinuous

media (Wang, 2009; Wang et al., 2010), highlight the strengths and drawbacks of

these two numerical methods in application to seismic modeling. Mainly, mesh and

media discontinuity alignments, in conjunction with the discontinuous nature of DG

solutions, characterize the efficiency and accuracy of DG solvers in cases where geom-

etry of reflectors play a dominant role in the accuracy of the modeling problem, while

FD methods thrive in smooth coefficient media. Seismic modeling problems model

wave propagation in regions that contain both discontinuities and relatively smooth

variations. For example, in marine-seismic modeling common discontinuities are the

seafloor and potentially salt domes, or other geophysical phenomena that produce

abrupt changes in media parameters. The “localized” nature of these discontinuities

has prompted research in hybrid FD/Hermitian-FEM methods (Rylander and Bonde-

∗As was the case for DG, N=2, where mesh sizes for both quadrature-free and quadrature based
DG were the same, independent of mesh adaptivity for the linear-in-depth velocity test case.
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son, 2000; Chen et al., 2014). The idea consists on applying FEM to a smaller region

containing the interface of discontinuity while FD or Hermitian interpolation is used

throughout the rest of the domain in order to capitalize on the strengths of each

method. The crux of the matter is the issue of coalescing in time and space the FD

regions of structured grids and FEM domains of unstructured meshes. Nonetheless,

current implementations and applications in solving Maxwell’s equations have shown

promising results (Rylander and Bondeson, 2000; Chen et al., 2014).
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Appendix A

A.1 Source Function

A uniform choice of source function is used throughout the numerical experiments

described in Chaper 3. In particular, the righthand side terms f(x, t), g(x, t) from

Eq.(2.1) take the following form:

f(x, t) = 0, and g(x, t) = χ(x)Ψ(t) (A.1)

where Ψ(t) = Ψ(t; fpeak) is a Ricker wavelet with central frequency fpeak,

Ψ(t; fpeak) =
(
1− 2(πtfpeak)

2
)
e−(πtfpeak)2 , (A.2)

and χ(x) = χ(x;x0, δx) is a cosine bump function centered at x0 and width δx.

Fig.(A.1) gives a 1D example of χ(x; 0, 0.5). Note that the spatial support of χ(x) is

compact, in fact supp χ(x; 0, 0.5) = [−0.25, 0.25].

The following are some of uniform choices for the source term made throughout

Chapter 2:

fpeak = 10 Hz, δx = [50 m, 50 m].
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Figure A.1 : 1D example of cosine bump function; x0 = 0, δx = 0.5
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Appendix B

B.1 Auxiliary Result Tables

The following tables include supplementary information for the various test cases

considered in Chapter 3. Maximum and root mean square (RMS) relative errors are

computed. Discretization parameters for the “true solution”, i.e., highly discretized

FD 2-4 solution, are also included.

dt [ms] h [m] max[%] RMS [%]
FD 2-4 0.0589 0.5 - -
FD 2-2 0.9546 6 5.07 4.99
FD 2-4 1.6122 12 5.09 4.98

DG N=2 1.2032 40 5.11 4.96
DG N=4 1.2058 80 5.09 4.98

Table B.1 : Results for homogeneous test case.

dt [ms] h [m] max[%] RMS [%]
FD 2-4 0.0442 0.5 - -
FD 2-2 0.7425 6 5.98 2.71
FD 2-4 1.1300 8 5.10 3.20

DG 1.0375 112.5 : 56.25 5.65 3.08

Table B.2 : Results for mixed test case.
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dt [ms] h [m] max[%] RMS [%]
FD 2-4 0.0442 0.5 - -
FD 2-2 0.4679 6 4.99 4.90
FD 2-4 1.5563 12 5.08 4.98
no mesh ref.
DG N=2, Q-free 1.2232 40 5.27 4.94
DG N=2, with Q 1.2232 40 5.36 5.05
DG N=4, Q-free 1.3327 80 5.12 4.99
DG N=4, with Q 0.9281 120 5.25 4.98
mesh ref.
DG N=2, Q-free 1.1631 80 : 40 5.22 4.93
DG N=2, with Q 1.2032 80 : 40 5.37 5.08
DG N=4, Q-free 1.2271 150 : 75 5.23 5.02
DG N=4, with Q 0.8686 200 : 100 5.20 4.98

Table B.3 : Results for linear-in-depth velocity test case.

dt [ms] h [m] max[%] RMS [%]
FD 2-4 0.0442 0.5 - -
FD 2-2 0.8379 6 5.24 4.96
FD 2-4 1.5645 15 5.91 5.00
no mesh ref.
DG N=2, Q-free 1.0027 40 5.18 4.99
DG N=2, with Q 0.9625 60 5.62 5.04
DG N=4, Q-free 0.6545 50 5.56 5.01
DG N=4, with Q 1.1994 80 5.28 4.99
mesh ref.
DG N=2, Q-free 0.9826 80 : 40 5.26 5.01
DG N=2, with Q 0.8523 100 : 50 5.81 4.99
DG N=4, Q-free 0.6545 100 : 50 5.55 5.00
DG N=4, with Q 1.2048 150 : 75 5.29 4.96

Table B.4 : Results for negative-lens test case.
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