### Lei Fu

Rice University Department of Earth Science Cell: (713) 586-9211 E-mail: lei.fu@rice.edu

| EDUCATION | Pursui                 | 2011-present                                                                                                                  |                        |  |  |  |  |  |
|-----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
|           | <i>Maste</i><br>Conce  | <i>r of Science</i> in Geophysics, University of Utah<br>Intration: Forward modeling and inversion of electromagnetic pro     | 2009-2011<br>blems     |  |  |  |  |  |
|           | <i>Bache</i><br>Major: | <i>lor of Science</i> , University of Science and Technology of China<br>Geophysics                                           | 2005-2009              |  |  |  |  |  |
| INTERESTS | Full wa<br>theory      | Full waveform inversion, mathematical and computational methods to study seismic theory and data processing, and geology      |                        |  |  |  |  |  |
| SKILLS    | Progra<br>Softwa       | Programming languages: Unix, C, Matlab, FORTRAN<br>Software: ProMAX, SeisWorks 3D, Groundwater Modeling System (GMS)          |                        |  |  |  |  |  |
| RESEARCH  | 2011                   | Study of the induced polarization effect in time domain using Control GEMTIP models (M.S. thesis)                             | ole-Cole and           |  |  |  |  |  |
|           | 2010                   | Computer Simulation of the Marine Horizontal Loop Transmitte<br>MT Surveys over the Oil Deposit                               | r CSEM and             |  |  |  |  |  |
|           | 2009                   | 2009 3-D marine controlled-source electromagnetic (MCSEM) IP Inversion                                                        |                        |  |  |  |  |  |
|           | 2009                   | Undergraduate thesis "Fast Marching Method in Polar coordina                                                                  | ites"                  |  |  |  |  |  |
|           | 2008                   | Theoretical Calculation of the Earth's Toroidal Free Oscillations<br>Geodesy and Geophysics, Chinese Academy of Sciences (IGC | s, Institute of GCAS). |  |  |  |  |  |

Induced polarization effect in time domain: theory, modeling and applications

Lei Fu, Vladimir Burtman, Michael S. Zhdanov

CEMI, University of Utah

# Outline

- 1. Introduction
- 2. Induced polarization effect
- 3. Cole-Cole model and GEMTIP model
- 4. Inversion of the time-domain GEMTIP model
  - 4.1 Two-phase model4.2 Two-phase model with 2% random noise4.3 Three-phase model

## 5. Experimental analysis of rock samples

6. Conclusion

# Introduction

Induced polarization (IP) phenomenon has long been observed in electromagnetic data.

Pelton et al. (1978) empirically introduced the Cole-Cole relaxation model, which has provided a useful framework for the interpretation of EM and IP data over the past 30 years.

Zhdanov (2008) introduced the Generalized Effective Medium Theory for Induced Polarization (GEMTIP).

## Induced polarization effect

IP is caused by complex electrochemical reactions that accompany current flow (Frasier, 1964):



1) Surface polarization of disseminated minerals in a host rock

2) Sketch of the potential waveform for a current injected into nonpolarizable and polarizable ground.

## **Cole-Cole Model**

$$\rho(\omega) = \rho_{DC} \left( 1 - m \left( 1 - \frac{1}{1 + (-i\omega\tau)^C} \right) \right)$$

### Time domain resistivity



#### (Emond, 2007)

## **GEMTIP** model

The initial goal is to construct the realistic electrical models of the rocks based on the effective medium theory of the multi-phase composite media.



Name: quartz monzonite porphyry (QMP) Minerals: quartz, feldspar, pyrite, chalcopyrite, (biotite)

5% chalcopyrite

## Two-phase time-domain GEMTIP model

Two-phase frequency domain spherical GEMTIP model:

$$\rho_{e}(\omega) = \rho_{0} \left( 1 + f_{1}m_{1} \left( 1 - \frac{1}{1 + (i\omega\tau_{1})^{C_{1}}} \right) \right)^{-1}$$
$$m_{1} = 3 \frac{\rho_{0} - \rho_{1}}{2\rho_{1} + \rho_{0}}, \ \tau_{1} = \left[ \frac{a_{1}}{\alpha_{1}} (2\rho_{1} + \rho_{0}) \right]^{1/C}$$

In order to obtain a time domain resistivity curve, one should apply the inverse Fourier transform:

$$\rho_e(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_e(\omega) e^{i\omega t} d\omega$$

# Effects of grain radius (a)

### Numerical solution for two-phase heterogeneous model:

| Varia<br>ble   | Unit                                 | Value |
|----------------|--------------------------------------|-------|
| ρ <sub>m</sub> | Ωm                                   | 500   |
| f              | -                                    | 0.02  |
| С              | -                                    | 0.7   |
| ρ <sub>1</sub> | Ωm                                   | 1     |
| α              | $\frac{\Omega \cdot m^2}{\sec^{cl}}$ | 0.1   |



## Effects of volume fraction (f)

### Numerical solution for two-phase heterogeneous model:

| Varia<br>ble   | Unit                                 | Value |
|----------------|--------------------------------------|-------|
| ρ <sub>m</sub> | Ωm                                   | 500   |
| а              | mm                                   | 0.1   |
| С              | -                                    | 0.7   |
| ρ <sub>1</sub> | Ωm                                   | 1     |
| α              | $\frac{\Omega \cdot m^2}{\sec^{cl}}$ | 0.1   |



# Inversion of the time-domain GEMTIP Model

## Inversion of the time-domain GEMTIP model

$$\vec{d} = A(\vec{m}) \longrightarrow A^{-1}(\vec{d}) = \vec{m}$$

where **d** is observed data; **m** is model parameter; *A* is a forward modeling operator.

**Tikhonov parametric functional** 

$$P(\bar{m}) = \phi(\bar{m}) + \beta s(\bar{m}) \Longrightarrow \min$$

where

 $\phi(\vec{m}) = ||A\vec{m} - \vec{d}||^2$  is a misfit functional  $s(\vec{m})$  is a stabilizing functional  $\beta$  is a regularization parameter Regularized conjugate gradient (RCG) method

## 4.1 Inversion for two-phase GEMTIP model

| Varia<br>ble   | Units                                | True<br>model | Initi<br>-al | Reco-<br>vered |
|----------------|--------------------------------------|---------------|--------------|----------------|
| ρ <sub>m</sub> | Ωm                                   | 100           | -            | -              |
| f              | -                                    | 0.05          | -            | -              |
| С              | -                                    | 0.5           | 0.1          | 0.50           |
| ρ <sub>1</sub> | Ωm                                   | 0.1           | -            | -              |
| а              | mm                                   | 2             | -            | -              |
| α              | $\frac{\Omega \cdot m^2}{\sec^{cl}}$ | 0.4           | 0.1          | 0.40           |

Two-phase resistivity time domain Resistivity 100 Predicted 98 Original Resistivity (Ωm) 96 94 92 <del>eeeeee</del>eee<sup>ee</sup>e 90 88 86 10<sup>-2</sup> 10<sup>-5</sup>  $10^{-3}$ 10<sup>0</sup> 10<sup>-1</sup>  $10^{-4}$ 10 Time (Second) 4 3 % Misfit 2 1 0 20 10 30 40 50 60 70 80 90 100 Iteration

Iteration number: 100 Misfit: 0.1%

## Misfit functional map



# 4.2 GEMTIP (2% random noise)

| Varia<br>ble   | Units                                | True<br>model | Initi<br>-al | Reco-<br>vered |
|----------------|--------------------------------------|---------------|--------------|----------------|
| ρ <sub>m</sub> | Ωm                                   | 100           | -            | -              |
| f              | -                                    | 0.05          | -            | -              |
| С              | -                                    | 0.5           | 0.1          | 0.52           |
| ρ <sub>1</sub> | Ωm                                   | 0.1           | -            | -              |
| а              | mm                                   | 2             | -            | -              |
| α              | $\frac{\Omega \cdot m^2}{\sec^{cl}}$ | 0.4           | 0.1          | 0.41           |





## Misfit functional map (2% noise)

Misfit



α

## 4.3 Inversion of three-phase GEMTIP model



### Frequency-domain inversion of three-phase GEMTIP model



Experimental analysis of rock samples





### Zonge CR system: GDP16 receiver; LTD10 transmitter



# Sample #13

Sar Cheshmeh copper porphyry deposit in Iran The reflective spots are chalcopyrite and pyrite inclusions. All sulfides are introduced during vein formation.

| 1 20.0 um                             |                                       |     |                       |       |   |           |                          |             |                |                                       |
|---------------------------------------|---------------------------------------|-----|-----------------------|-------|---|-----------|--------------------------|-------------|----------------|---------------------------------------|
| 1.0 μm                                | OFMSCAN                               | Mi  | neral Name            |       |   |           |                          |             |                |                                       |
| μοτοίου μm                            |                                       |     | Feldspar              | 41.41 |   | -         |                          |             |                | -                                     |
| 2. 10 1                               |                                       |     | Quartz                | 30.27 |   | 1         | 1                        | 1           | 1              |                                       |
| 100 State                             |                                       |     | Micas                 | 21.94 | 4 | 40        | 50                       | 60          | 70             | 8                                     |
| ar 18 7 A                             |                                       |     | Background            | 9.08  |   |           |                          |             |                |                                       |
| and the second second                 | Chicago Maria                         | /   | Chalcocite/digenite   | 3.61  |   | RESE      | Mr. Harry                | 13 Thorne   | a they         | 2.77                                  |
| 132                                   |                                       | / 📃 | Plagioclase           | 1.06  |   | and the   |                          | 27 6 99     |                | 1.2                                   |
| a barnen                              |                                       | //  | Chalcopyrite          | 0.46  |   | and a     | a date the               | MAN I       |                | A. Y                                  |
| Des Devo                              |                                       | / 📃 | Others                | 0.41  |   | 0 FT      | 1. The                   | the set of  |                | - Annie                               |
| Service Control                       |                                       |     | Pyrite                | 0.38  |   | Sec. Jack | The same                 | a an ada    | 8.4            | 2-12                                  |
|                                       |                                       |     | Calcite               | 0.23  |   |           | 1 ch                     |             | See 50         | and the                               |
| 26-68-4-68-                           |                                       |     | Rutile                | 0.10  |   | Sec. 14   | Al and                   |             | and the        | 2. 211                                |
|                                       |                                       |     | Cuprite               | 0.05  |   | 13366     | and the second           |             | Bern the       | 10.00                                 |
|                                       |                                       |     | Other_Sulphides       | 0.03  |   | 12.3      | 10.00                    | 0.55        | 1.1            | San Th                                |
|                                       |                                       |     | Pyrrhotite            | 0.02  |   | 100       |                          |             | A Standard     |                                       |
|                                       | And the second second                 |     | Chlorite              | 0.01  |   | 許行        | and the second           |             | and the        | N.                                    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                       |     | Zircon                | 0.01  |   | 1 2 2     |                          | 1. 2.1      | and a second   |                                       |
| 54.598 C                              |                                       |     | Claymx                | 0.01  | 1 | the state |                          |             | 12.74          | io,                                   |
|                                       |                                       |     | Biotite               | 0.00  |   |           | a. John                  |             | and the second | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 10 M 10 M                             |                                       |     | Other_oxides          | 0.00  |   |           | A. 1.                    | the state   |                |                                       |
| Sector Sec                            | COLORA LAST                           |     | l Ce Phosphate        | 0.00  |   | Mine &    | 1 Est                    | 1 . A       | and the second |                                       |
| Contraction of                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |     | Goethite              | 0.00  |   | 2.0       | A Ba                     | - Lings     | and had        | 1.2.5                                 |
|                                       |                                       |     | j Apatite<br>Louisiae | 0.00  |   | None of   | Concernant of the second | Maria Maria | and the first  | 2.200                                 |
| and the second                        |                                       |     | Olivine               | 0.00  |   |           | -                        |             |                |                                       |

## 5.2 Sample #13



## 5.2 Sample #13

| variable       | Units | Initial<br>model | Time<br>result | Freq<br>result | TD & FD<br>difference |
|----------------|-------|------------------|----------------|----------------|-----------------------|
| ρ <sub>m</sub> | Ωm    | 163              | -              |                | -                     |
| f              | -     | 0.05             | -              |                | -                     |
| С              | -     | 0.1              | 0.58           | 0.52           | 10.3%                 |
| ρ <sub>1</sub> | Ωm    | 0.1              | -              |                | -                     |
| а              | mm    | 0.002            | -              |                | -                     |
| α              |       | 0.1              | 0.46           | 0.39           | 15.2%                 |

a: misfit functional in time domainb: misfit functional in frequency domain



0.5

α

0.6

0.7

0.8

0.9

1

2

0.2

0.1

0.1

0.2

0.3

0.4

## Conclusion

- I have extended the basic principles of the general effective medium theory of induced polarization (GEMTIP) from the frequency domain to the time domain.
- I have simulated the time-domain resistivity responses for two and three phase heterogeneous media. The IP parameters manifest themselves as peaks in the complex resistivity spectra, or as slopes of the resistivity transients.
- The inversion of synthetic resistivity transients demonstrates that it is possible to discriminate multiple parameters for different mineral inclusions.

Thank you!