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Source Synthesis - Why & How

Main motivation for this work: More efficient inversion - use fewer
sources (ideally, one for entire data set) in each iterative inversion
step

I length-1 encoding (weighted zero-lag data stacks - Krebs et
al. 2009)

I inversion using source blending, simultaneous shooting (Ayeni
et al. 2009, Verschuur & Berkhout 2009)

I random filtering, incoherency

Explicit recovery of individual shots not primary goal - synthetic
sources chosen to drive model towards optimal inversion solution

= model which best fits any data (so shots are implicitly
recovered...)



Source Synthesis - Why & How

This talk explores deterministic source synthesis via optimality
principle:

best source ⇔ worst residual

I origin in other inversion/imaging technologies

I simple source selection algorithm for acoustic modeling

I a few examples suggest pitfalls, remedies

I many unanswered questions - notably, does it really work? (in
FWI)
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Deterministic source synthesis

Introduced into biomedical Electrical Impedance Tomography
(EIT) by Isaacson (1986) - similar ideas: array ultrasonics (Fink &
Prada 2004), ocean acoustics (Roux & Kuperman 2005), SAR
(Borcea & Papanicolaou 2007),...

EIT: image anomalies interior to body by measuring voltage
response to applied current on boundary.



Deterministic source synthesis

Acoustic Model: state u= acoustic potential in model domain R
(subsurface), model m = (velocity v , density ρ),

1

ρv2

∂2u

∂t2
−∇ · 1

ρ
∇u = f (x , y , t)δ(z − zs).

Synthetic source f = divergence of force density, confined to
source depth plane zs - must be post-synthesized digitally.

Measured response: pressure at fixed spread receiver locations
Λd f = {∂u/∂t(xr , t)} - linear in f - synthesized from field (point)
source data traces.

Predicted response for model m (= (v , ρ)): Λ[m]f , computed by
FE or FD or...



Deterministic source synthesis

Isaacson’s Distinguishability Principle: seek normalized f so that
RMS difference is largest: given estimated model m,

maximize (Λd f − Λ[m]f )T (Λd f − Λ[m]f ) subject to f T f = 1

max value λ[m] = largest eigenvalue (operator norm) of
distinguishability operator

A[m] = (Λd − Λ[m])T (Λd − Λ[m])

= largest discrepancy in response for any (normalized) source
(applied current pattern).



Deterministic source synthesis

Isaacson’s algorithm:

I initialize m, f

I while (not satisfied),

I fixed m, update f : perform several power method steps:
f ← A[m]f , f ← (1/

√
f t f )f

I fixed f , update m: perform several quasi-Newton steps with
objective function f tA[m]f (standard output least squares)



Deterministic source synthesis

A few practical points:

1. assuming field data wavelet w known (!), achievable synthetic
sources are filters:

f (x , y , t) =
∑
xs ,ys

∫
dτ g(xs , ys , t − τ)w(τ)δ(x − xs)δ(y − ys)

Possibilities for g (1) arbitrary length filters (random choice -
Romero et al. 00); (2) length-1 filters (amplitude factor) -
Krebs et al. 09.

2. transpose operator Λ[m]T = RΛ[m]R, R = time-reversal op

3. Isaacson’s alternating algorithm: Each step of both types
involves 2 or 3 simulations (forward and/or reverse time
loops), for single (array) source
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Setup

2D numerical experiments, using FD modeling/inversion package
(IWAVE++).

Two models per experiment:

I Target model m∗ - “measured” data Λd f = Λ[m∗]f

I Reference model m - “predicted” data Λ[m]f .

Measure progress in terms of Rayleigh quotient (“RQ”):

RQ =
f TA[m∗,m]f

f T f

involves computing distinguishability operator
A[m∗,m] = (Λ[m∗]− Λ[m])T (Λ[m∗]− Λ[m]).



Setup

I staggered grid scheme for pressure, particle velocity

I source represented as constitutive law defect = RHS in
pressure equation

I Models sampled at ∆x = ∆z = 20 m

I Absorbing BC on all sides of simulation domain

I Source, receiver depth 20 m - source = receiver locations

I 6 km fixed spread sampled at ∆xs = 20 m, 3 s recording
interval

I 25 Hz high-cut imposed uniformly by filtering all sources,
sources windowed to 0.0-0.4 s,



Layer over Half Space
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Layer over Half Space

Initial source = truncated normal incidence plane wave

10 iterations of power method:

I initial Rayleigh quotient = 1.27

I final Raleigh quotient = 56.3

Looks great - however...



Layer over Half Space
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Layer over Half Space

Data Difference Λ[m∗]f − Λ[m]f
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Layer over Half Space

RTM Image = Least Squares gradient
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Theory: Why this happens, what to do

Wave packed data:

f (x , y , t) = A(x , y , t)e i(kxx+kyy+ωt)

Guess: solution of wave equation

1

ρv2

∂2u

∂t2
−∇ · 1

ρ
∇u = f (x , y , t)δ(z − zs)

takes form for ±z > 0

u ' B±e i(kxx+kyy±kzz+ωt),

where kz = ±
(
ω2

v2 − k2
x − k2

y

) 1
2

and B± solves transport equation.



Theory: Why this happens, what to do

Causality: ±kz > 0 if ±z > 0. Choose test function φ(x , y , z , t),
then integration by parts gives∫ ∫ ∫ ∫

dxdydzdt p(x , y , z , t)

(
1

ρv2

∂2φ

∂t2
−∇ · 1

ρ
∇φ
)

=

∫ ∫ ∫
dxdydt f (x , y , t)φ(x , y , t)

Since both p and ∂p/∂z are continuous (normal stress,
displacement), can split first integral into z < 0 and z > 0 pieces
and integrate by parts again. Because of wave equation for p, only
boundary terms left:

=

∫ ∫ ∫
dxdydt

{
[p]
∂φ

∂z
−
[
∂p

∂z

]
φ

}



Theory: Why this happens, what to do

This identity must hold for any test function (smooth, vanishing
for large x, t) - in particular, can choose φ to be = 0 on z = 0
whilst ∂φ/∂z takes on arbitrary values. Hence [p]=0. Since φ can
also take arbitrary values, follows that

f (x , y , t) = −
[
∂p

∂z

]
(x , y , t)

First condition implies that B− = B+ on z = 0; second, that

f (x , y , t) = −2ikzB±e i(kxx+kyy+ωt),

Thus

u ' Ã

kz
e i(kxx+kyy+kzz+ωt),

where Ã|z=0 = i
2A, and Ã solves transport eqns.



Theory: Why this happens, what to do

Upshot: kz small ⇒ energy transfer to acoustic field extremely
efficient per RMS unit f .

kz small ⇒ most energy propagates near-horizontally - limits
imaging aperture, vertical resolution.

Solution: depress part of spectrum of A[m] corresponding to small
kz by composing Λd − Λ[m] with dip filter.

For water layer near surface: kz small when |kx | ' 0.67 s/km.

Example: for LOHS example, choose dip filter with corner slope of
0.3 s/km, cut slope of 0.5 s/km - then optimal source is small
modification of plane wave source.



Laterally Heterogeneous Example

Bulk moduli - reference (top), target (bottom)
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Laterally Heterogeneous Example
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Laterally Heterogeneous Example

Data Difference Λ[m∗]f − Λ[m]f
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Laterally Heterogeneous Example

RTM Image = Least Squares gradient
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Conclusions and Prospects

Many numerical experiments suggest

I “optimal” source emphasizes largest features in residual data,
as intended

I dip filtering effectively controls tendency to produce
horizontally traveling energy

I selective illuminates features in gradient (RTM residual image)



Conclusions and Prospects

If anything, illumination is too selective - a single source is likely
not sufficient

Gao et al. 2010: find all eigenpairs of distinguishability operator
above a threshhold, use these collectivley - still much smaller than
number of source positions in typical survey (?)

Natural method: Lanczos algorithm - finds segment of spectrum,
rather than merely largest eigenvalue.

Next step: use Lanczos implementation in RVL to explore
time-domain version of Gao et al. proposal.
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