
Geophysical Prospecting (200?) XX, 000–000

From Modeling to Inversion: Designing a

Well-Adapted Simulator

William W. Symes ⋆, Dong Sun †, and Marco Enriquez ‡

Accepted 200? ?? ??. Received 2007 Januari ??; in original form 2007 Januari ??

SUMMARY

This paper describes a few mild design constraints which permit rapid adaptation of

modeling code for linear wave propagation to imaging/inversion or design optimization

applications, retaining parallelism and other performance enhancements of the underly-

ing simulator. It also describes an abstract software framework preserving the modularity

of both optimization and modeling software in building inversion applications, and illus-

trates this possibility via a an example framework implemented in C++. Wave inverse

problems tend to be afflicted by a variety of features, including extreme ill-conditioning

and nonlinearity, which degrade the performance of optimization formulations. Extended

modeling variants of least-squares inversion, motivated by migration velocity analysis,

may relieve some of these difficulties. The framework described also accommodates these

extensions to standard inversion.

1 INTRODUCTION

Seismic inversion extracts information about the subsurface from surface or downhole data

by adjusting model parameters to predict this data via numerical simulation. The least-

squares approach to inversion, now widely known as Full Waveform Inversion (“FWI”),

seeks to minimize the RMS difference between predicted and observed data. The simplest

mathematical statement of this least-squares approach (ignoring regularization, data and

2 W. Symes, D. Sun, M. Enriquez

model representation details, and so on) is:

min
m∈M

J [m] :=
1

2
‖F [m]− d‖2, (1)

where the modeling or prediction operator F :M→D maps the model spaceM - a set of

possible models of Earth structure - to the data space D, a Hilbert space of possible data

sets with norm (error measure) ‖.‖. First proposed by (Tarantola(1984)) and others in the

80’s, this approach to seismic data processing has recently become feasible in 3D at field

scale, and under favorable circumstances produces economically important information not

obtainable in other ways (Barkved et al.(2010)).

Computational efficiency suggests a gradient-descent approach to the optimization prob-

lem (1): that is, update the model m by computing the objective gradient

∇J [m] = DF [m]T (F [m]− d) , (2)

searching for a new m in a descent direction related to this gradient, at which J [m] decreases

substantially. These updates are repeated until the objective is decreased sufficiently, or no

further improvment occurs, or some other stopping criterion is satisfied. In equation (2),

DF [m]T denotes the adjoint or transpose of the Jacobian DF [m], representing the derivative

of F at point m.

Both modeling (implementation of F above) and optimization software may be quite

complex, and developed by different groups of experts. Consequently, production of inver-

sion applications may require extensive modification of both types of input codes. Our goal in

the following pages is to suggest approaches to design of modeling and optimization software

that can considerably ease the task of combining them to produce inversion applications.

We will offer a proof of our approach, in the form of an inversion package that links virtually

unmodified modeling and optimization packages, via a generic middleware package and a

minimal amount of additional code. The necessary constraints on modeling code are mini-

mal, and flow naturally from the typical form of methods for solution of partial differential

equation systems. The design principles to which optimization and middleware layers must

adhere are equally natural.

From Modeling to Inversion: Designing a Well-Adapted Simulator 3

In the remainder of this introduction, we will explain further the structure of the software

design problem for inversion, and our approach to its solution, and overview the organization

of the paper.

Evaluation of the prediction operator F involves solution of one or more partial differen-

tial equations or systems, discretized via a finite difference or finite element or pseudospectral

(or some other) method. So do the applications of DF [m] and DF [m]T . These calculations

are very large in scale for 3D (and even 2D) models, so a variety of high performance com-

puting techniques are commonly employed in their implementation, such as parallelization

via domain decomposition and MPI, multithreaded execution using OpenMP (on multicore

CPUs) or CUDA or OpenCL (on GPUPUs) and other specialized techniques which must be

regarded as enabling technology. The algorithms embodied in simulation code also include

a variety of sophisticated enhancements such as high-order schemes, regridding, pseudoan-

alytic timestepping, and complex boundary conditions ((Moczo et al.(2006)) for example).

Simulators thus involve a considerable investment of time and programming effort. Finally,

modeling choices considered reasonable today (typically acoustics or pseudoacoustic TI sys-

tems) will likely give way in the future to other systems incorporating more complete wave

physics. This evolution will have consequences for all aspects of simulator implementation.

For example, methods currently in vogue for reconstructing source wavefields in the adjoint

state implementation of DF [m]T rely on the time-reversible nature of the wavefield, which

no longer obtains for models with appropriate physical attenuation.

Optimization algorithms on the other hand involve generic linear algebra operations such

as linear combination or inner product, in addition to interaction with the modeling packages

just described. These algorithms also gain complexity as their effectiveness increases, espe-

cially with regard to the incorporation of model constraints (see (Nocedal & Wright(1999))

for a good overview). Thus some method for protecting investment in effective optimization

algorithms is also appealing.

This paper describes three interlinked developments, which together open an avenue to

straightforward incorporation of sophisticated modeling techniques in inversion software.

4 W. Symes, D. Sun, M. Enriquez

First, we explain an approach to generation of modeling algorithms (for F) which facilitates

the implementation of algorithms for the auxiliary Born and adjoint Born maps (DF, DF T)

essential for inversion. This approach involves minor constraints on the expression of common

finite difference and finite element algorithms, in return for which the auxiliary algorithms are

nearly automatic, and inherit the implementation features (parallelism, absorbing boundary

conditions,...) of the base algorithm.

Second, optimization, linear algebra, and other numerical code can be written to avoid

dependence on details of data representation or simulator construction, hence apply without

alteration to a wide range of data fitting and similar scientific computing problems. The

utility of this approach for scientific programming has been explored by many authors over

the last two decades (Balay et al.(2001); Heroux et al.(2003); Kolda & Pawlowski(2003);

Benson et al.(2007); Padula et al.(2009)). Either implicitly or explicitly, this approach in-

volves so-called object-oriented programming, which centers around the definition and use of

domain-adapted data types. This approach to programming is ubiquitous in the commercial

software world. While the principles of object-oriented design can be implemented using any

computer language, we prefer to work in a language environment explicitly supporting this

programming style. Our group has developed an object-oriented abstract numerics library,

the Rice Vector Library (“RVL”), written in C++, which serves as the foundation for our

inversion software. RVL has be described extensively elsewhere (Padula et al.(2009)); we

give a brief overview below. Our intent is not to focus on this particular library - alterna-

tives exist, and more will appear - but to elucidate the generic role of this type of library in

effective software engineering for inversion.

Finally, linking the specific data structures of a simulator to an abstract numerics library

like RVL requires a “middleware” translation layer. Since we focus on the time domain in

our work, the middleware layer expresses the formation of abstract numerical objects (op-

erators, functions, model/data spaces...) from timestepping algorithms. Since the auxiliary

(linearized, adjoint state) computations figure in aspects of the abstract objects (operator

derivatives and their adjoints), this layer is a natural home for algorithms such as various

From Modeling to Inversion: Designing a Well-Adapted Simulator 5

methods for source wavefield reconstruction, which then apply ipso facto to all timestepping

algorithms. We have implemented an middleware layer, the Timestepping Library for Op-

timization (“TSOpt”, (Enriquez & Symes(2009))), and give a brief description. Again, our

goal is not particularly an exposition of TSOpt, but rather an explanation of the generic

role it plays in converting simulation code into inversion software via linkage with abstract

numerical algorithms.

In the following sections, we will describe the simulation of wavefields, in a time-discrete

form that facilitates description of the Born and adjoint simulations required for inversion

algorithms. While we discuss only first-order perturbation computations, we note that very

similar techniques may be used to compute second derivatives as are required in full-blown

Newton method implementations (Symes & Santosa(1988)). Certain simple and common-

place properties of the basic evolution scheme suggest implementation using functions that

can be reused in Born and adjoint schemes. The next section describes abstraction of these

several simulators at the loop level, and various solutions to the well-known source field

storage problem for adjoint simulation, including the optimal checkpointing algorithm, that

are are naturally implemented in terms of these loop abstractions. Implicitly, these schemes

define the forward map F and its associated constructs. We explain how these relations

might be made explicit by providing abstract definitions for the vector calculus attributes

of a nonlinear function or operator, and building these computational objects out of simula-

tion loops. The vector calculus layer allows us to formulate optimization and linear algebra

algorithms, thus completing the path from difference stencils to inversion.

To demonstrate that an implementation is actually possible, we present an inversion

framework following the principles outlined in the preceding sections. This software package,

IWAVE++ (Sun & Symes(2010a); Sun & Symes(2010b)), builds on the IWAVE simulator

package which we developed as a benchmarking tool for the SEAM project (Fehler(2009)).

We were able to use IWAVE, with essentially no modification, as the core of our inversion

software, which also uses the aforementioned TSOpt and RVL packages. The underlying fi-

nite difference code required virtually no change, and the algorithmic and software features

6 W. Symes, D. Sun, M. Enriquez

built into the simulator (high order methods, i/o, absorbing boundary conditions, paral-

lelization via domain decomposition) are inherited by the inversion application. We provide

a few examples of typical computational results, including the so-called dot product test

(which verifies the quality of the DF [m]T computation) and our recreation of some of the

examples from the landmark paper of (Gauthier et al.(1986)).

Least-squares inversion, as formulated in (1) for example, has some well-known computa-

tional drawbacks, which (Gauthier et al.(1986)) were amongst the first to explore. In the final

section, we give a brief overview of extended modeling algorithms designed to overcome these

drawbacks, and show how the computational framework described here can accommodate

them.

While we focus on time-domain computations, much recent work on waveform inver-

sion has employed the frequency domain (Pratt(1999); Sirgue & Pratt(2004); Brenders &

Pratt(2007a); Brenders & Pratt(2007b); Plessix(2009); Brossier et al.(2009); Plessix et al.(2010);

Barkved et al.(2010)). Some aspects of our discussion also apply in that domain, for example

the sufficient conditions for reuse of forward modeling kernels in adjoint modeling.

An appendix provides a detailed derivation of the adjoint state method, in the form

presented in next section.

2 FROM MODELING STEPS TO LINEARIZED AND ADJOINT

MODELING STEPS

The formula (2) reveals that the adjoint operator DF [m]T is a key ingredient in the gradient

computation (and the gradient is in turn a key ingredient in any Newton-related optimization

method). The adjoint operator also has some value in itself: its output is reverse-time migra-

tion. The linearized or Born operator DF [m] is also useful for some optimization approaches

(notably the so-called Gauss-Newton algorithm or its more sophisticated Newton-Krylov

variants (Akcelik et al.(2003))), and is also invaluable in quality control of the adjoint oper-

ator. A modeling package, on the other hand, computes F [m]. The purpose of this section

From Modeling to Inversion: Designing a Well-Adapted Simulator 7

is to lay out mild restrictions under which the components of a (time-domain) computation

of F [m] can be reused in computing the actions of DF [m] and DF [m]T .

We will use u to denote the state vector of a generic discretized evolution system, de-

riving from a system of partial differential equations encapsulating a model of seismic wave

propagation. The precise method of discretization is immaterial - finite difference, conform-

ing or discontinuous Galerkin, pseudospectral,... - the reasoning which follows applies in any

case. The evolution is also discrete in time: un holds the dynamical wavefields at one time

or several related times around n∆t, e.g., the displacement field in elasticity or the pressure

in acoustics at two adjacent time levels, or stress and particle velocity at two time levels.

For convenience, we will imagine that the discrete times are uniformly spaced, with step ∆t,

as is commonplace in seismic simulation. This constraint is really not necessary, and in fact

we have been careful not to build it into our software in any essential way, but it does make

the exposition simpler, so we adopt it for the purposes of this paper.

The evolution (time step) operator of the system depends on a vector m of model or

control parameters. which represents material parameter fields describing of Earth structure,

e.g., the p-wave velocity or density or shear modulus or ... Seismic simulation generally

takes place on time scales over which the material parameter fields are constant in time

(autonomous). Thus the control vector is independent of time. We will sometimes refer to

the state vector as containing the dynamical fields, and the control vector as containing the

static fields, of the evolution problem.

The evolution operator H relating the state u at n∆t times to the state un+1 at (n+1)∆t

is linear, and depends on the parameter vector m:

un+1 = H [m,un] + fn, n = 0, 1, . . . , N − 1 (3)

in which the “source” term fn represents time-varying external energy input to the system.

It’s quite common for H to consist of the composition of one or more sub-steps H0, ..., Hk

and a parameter-independent “cleanup” step W :

H [m,u] = WHk[m, Hk−1[m, · · ·H0[m,u] . . .]]. (4)

8 W. Symes, D. Sun, M. Enriquez

This structure is familiar for staggered-grid finite difference schemes (Virieux(1984); Virieux(1986);

Levander(1988a)) for instance, in which H0 updates pressure (for acoustics) or stress (for

elasticity), and H1 updates particle velocity. Many other schemes conform to this struc-

ture, however. For example, the standard second-order pressure scheme in constant-density

acoustics,

pn+1 = 2pn − pn−1 + v2∆t2Lpn (5)

with L denoting an approximate Laplace operator, and v the sound velocity field, may be

rewritten in terms of the vector

un = (pn, an)T , an = (pn − pn−1)/∆t.

The second component is proportional to the acceleration at the half time step (n − 1
2
)∆t.

The three-level evolution (5) is equivalent to the two-level scheme

an+1 = an + v2∆tLpn (6)

pn+1 = pn + ∆tan+1 (7)

, which is in turn equivalent to the composite step H = WH0 for the state vector u = (p, a)T

and m related to v:

H0[m,u] =







I 0

v2∆tL I













p

a






, W =







I ∆tI

0 I






. (8)

In each row of the matrices above, I denotes the identity, 0 the zero operator - that is, these

are block matrices, each entry of which is itself an operator acting on one of the discrete

fields comprising the state vector.

The system representation (8) of constant density acoustics exhibits another common

feature: the sub-step operator(s) depending on the material parameters are affine in a suit-

ably chosen parameters, and the constant term is the identiy operator. In (8) the appropriate

parameter is the squared velocity v2, that is, m = (v2):

H0[m,u] =













I 0

0 I






+ v2







0 0

∆tL 0



















p

a







From Modeling to Inversion: Designing a Well-Adapted Simulator 9

In the case of staggered grid schemes (either standard or rotated, see (Moczo et al.(2006))),

the appropriate parameters are bouyancy (reciprocal density) and the Hooke tensor, or a

set of parameters derived from it in cases of additional symmetry.

We will assume that the sub-step operators H0, ..., Hk are each affine in some set of

material parameter fields. Note that this may require a different choice of material parameter

fields than is natural or normal for description of the model - certainly squared velocity is not

a particularly natural parameter (although, after multiplication by density, it does become

the bulk modulus). Nonetheless, it is in squared velocity, rather than velocity, that the

component operator H0 in (8) is affine. Similarly, the inertial property of rock is usually

denominated in mass per unit volume, rather than volume per unit mass, yet the latter is

the “affine” choice of parameter for staggered grid velocity-stress schemes.

Assuming from now on that m is a vector of parameters in which the sub-step operators

are affine, we write

Hj [m,u] = u + Lj [m,u] (9)

in which Lj , j = 0, ...k are k + 1 bilinear state-vector valued operators. That is, Lj [m,u] is

linear in m and u separately.

Because of the form of (9), each sub-step is an increment, which we indicate by the

increment symbol += (following common practice in C). We presume that the scheme is

implemented in overwrite form, that is each field is updated in place so that at time step n,

u holds the field that we have denoted as un, and each step in the algorithm updates it - thus

the symbols = and += in the following algorithm descriptions indicate assignment of the

right-hand side to the left. If the algorithm is to be organized in this overwrite mode, then

the state vector u must have the current simulation time as one of its attributes. Since the

state vector represents the system state at a particular time only in the corresponding step

of (3), a sampling operator S needs to be supplied. This operator extracts partial information

from the state and records it in a time-dependent data structure, consisting of data traces,

movie frames, and perhaps other quantities (such as vorticity extracted from the velocity

field, for example). The time information stored in the state is used to determine the output

10 W. Symes, D. Sun, M. Enriquez

of S and the way in which it is stored in the output data objects. For convenience only,

we assume that the sampling operator is linear. Its output increments the data vector d.

Finally, a similar source insertion operator R is required to increment the state vector by

the source field (f in (3)). While the usual notation does not suggest it, we can assume that

this operator acts only on the current time level of the state vector.

With these conventions, the discrete evolution (3) takes the form

SIM (1) u = 0 ;

SIM (2) For n = 0, . . . , N − 1 do:

SIM (2.1) For j = 0, . . . , k do: u+= Lj [m,u];

SIM (2.2) u = Wu

SIM (2.3) u+= Rf

SIM (2.4) d+= Su

Born modeling or linearized simulation refers to the system for the first-order perturba-

tion field δu corresponding to a perturbation δm in the material parameter fields, which

follows from the system (3) by implicit differentiation: for n = 0, 1, . . . , N − 1,

δun+1 = DuH [m,un]δun + DmH [m,un]δm (10)

which must proceed synchronously with the simulation algorithm (3). This system can also

be written in incremental form, in the same way that the SIM system above implements (3)

under the assumption of affine sub-steps. The sampled output produces a perturbational

output field δd.

BORN SIM (1) u = 0, δu = 0;

BORN SIM (2) For n = 0, . . . , N − 1 do:

BORN SIM (2.1) For j = 0, . . . , k do:

δu+= Lj [m, δu];

δu+= Lj [δm,u];

u+= Lj [m,u]

From Modeling to Inversion: Designing a Well-Adapted Simulator 11

BORN SIM (2.2) u = Wu; δu = Wδu

BORN SIM (2.3) u+= Rf

BORN SIM (2.3) δd+= Sδu

The adjoint state computation associated to the system BORN SIM is a backwards

evolution for an adjoint state λu and accumulation for an output object (or image volume)

λm. The field λu is a Lagrange multiplier for the system (3), viewed as a constraint on u -

see (Plessix(2006)) for details.

An vector of operators Mj related to Lj , j = 0, . . . , k is a critical ingredient in the adjoint

state computation. The relation depends on inner (dot) products 〈, 〉S in the state vector

space, and 〈, 〉M in the model space. For any state vectors u1,u2 and any material parameter

field m,

〈Lj [m,u1],u2〉S = 〈m, Mj[u1,u2]〉M . (11)

This sounds abstruse, but in concrete cases construction of Mj is typically straight-

forward. For example, a sub-step in the staggered grid acoustic Born modeling scheme

(Virieux(1984)) is

δp += κ∇ · δv + δκ∇ · v.

with ∇· denoting a discretized divergence operator mapping half-cell displaced velocity fields

onto the pressure grid. In this system u = (p,v)T and m = (κ, b)T with b = 1
ρ

being the

bouyancy. Thus the preceding equation may be re-written

u+= L[m, δu] + L[δm,u]

in which κ acts by pointwise multiplication at gridpoints in

L[m,u] = (κ∇ · v, 0)T .

Thus with the obvious choices of Euclidean dot products in model space (pressure grid,

half-cell displaced velocity grids), for both the pressure and bulk modulus perturbations,

one obtains

M [u1,u2] = ((∇ · δv1)p2, 0)T .

12 W. Symes, D. Sun, M. Enriquez

Note that this is actually not new: in this case, M [u1,u2] = L[u2,u1] - so implementing L

automatically implements M !

The adjoint computation also requires the state-space adjoint LT
j of Lj ,

〈Lj[m,u1],u2〉S = 〈u1, L
T
j [m,u2]〉S.

This adjoint is equally easy to compute in concrete cases.

Besides the material parameter fields m, input for the adjoint computation is a sample

vector λd of the same type as the output d of the SIM system.

In update form, the adjoint evolution may be written:

ADJ SIM (1) λu = 0

ADJ SIM (2) For n = N, . . . , 1 do:

set time in u,d to n− 1;

ADJ SIM (2.1) λu+= ST λd;

ADJ SIM (2.2) For j = k . . . , 0 do:

λm+= Mj [λu,u]

λu+= LT
j [m, λu]

As in the other two simulation algorithms, the adjoint sampling operator ST is presumed to

act only on the current time level of the adjoint data field λd Appendix A gives a detailed

derivation of the adjoint scheme ADJ SIM.

We note that λm = 0 must be part of the initialization of the algorithm, before any

adjoint modeling loops are performed.

Two major observations arise from examination of the schemes SIM, BORN SIM, and

ADJ SIM. First , everything hinges on the sub-step operators Lj . Both SIM and BORN SIM

boil down to recursions involving the function

(u,w,m) 7→ u + Lj [m,w], (12)

for various choices of state vectors u and w and material parameter fields m, and j =

0, . . . , k.. With the addition of the adjoints LT
j and Mj , the adjoint simulation ADJ SIM

From Modeling to Inversion: Designing a Well-Adapted Simulator 13

becomes available. We have already pointed out that functions implementing Mj and Lj

may be related, even identical, with appropriate identification of arguments. For self-adjoint

systems like linear elasticity and acoustics, it is even the case that Lj = LT
k−j, j = 0, . . . , k.

In these cases, only the implementation of the generalized time (sub-)step function (12) is

required to implement all of the components of the modeling, Born modeling, and adjoint

modeling algorithms.

Second, the appearance of the reference state vector u in ADJ SIM implies a well-

known access conflict: u is computed forward in time, whereas λu is computed backwards. A

common solution to this problem (Griewank(2000)) is to store all time steps of the reference

field u. In fact, other more efficient solutions are available; we discuss some possibilities in

the next section.

3 FROM MODELING STEPS TO LOOPS AND MODELING PACKAGES

The algorithms descriptions in the last section are natural from the mathematical point of

view. In this section we begin the process of converting them into descriptions of compu-

tational algorithms, by identifying natural computational elements. We will refer to a this

collection of software elements as a modeling package.

To begin with, since the argument of the evolution operator H (in (3) and related equa-

tions) is neither the control vector m, nor the state vector u, but rather the pair (m,u), it

seems reasonable to regard the pair as the fundamental data object.

Taking into account this observation, an implementation of SIM require these compo-

nents:

• State: a data structure holding the (state, control) pair vector (m,u). This structure

must include (i) all static (material parameter) fields; (ii) all dynamical fields; (ii) the time

level n, and (iv) the sub-step index j, assuming that the evolution is divided into sub-steps.

• Step: the collection Step of time-step operators L0, . . . , Lk, or rather functions which

apply the generalized time-step operators (12). We will confound Step with its application

14 W. Symes, D. Sun, M. Enriquez

to the state vector, i.e. regard Step as a function that can be called. That is, at time step

n and sub-step j, Step applies the the operator (12) for index j.

• Time: a structure containing start and end times for the simulation, also a function that

updates both the time step n and the sub-step j in the State data structure: if j < k then

j += 1, else j = 0 and n += 1. We will use Time synonymously for this function, and assume

that it returns the boolean value true for time step indices n within the simulation range

0, . . . , N , else false.

• Sample: To get the (trace or movie frame) data out, we require a computational real-

ization of the sampling operator S, which we will call Sample. This function must transfer

data between the State and an external data structure, which we discuss below. We also

give Sample the task of adding the source data (fn in equation (3)). Both (input) source

data and (output) trace data are attributes of the Sample object, as we construe it here.

Restated in terms of these pseudo-code components, an implementation of the SIM

algorithm looks like

Sim<State,Step,Sample,Time>:

while (Time(State))

Step(State)

Sample(State)

To complete the description of the timestepping algorithm, we must identify methods to ini-

tialize the State, and to extract output data from the Sample operator: that is, the means

by which the algorithm communicates with its environment. We will denote by Model the

data structure containing information required to initialize the static fields in the simulator

State. Model thus encapsulates one or several fields, represented in any convenient fashion

(sample arrays on regular grids, vectors on unstructured finite element meshes, splines,...).

Whether grouped together in a formal data structure, or residing in unconnected data struc-

tures, the sample information forms a logical unit with the geometric (grid, spline node,...)

From Modeling to Inversion: Designing a Well-Adapted Simulator 15

and physical (units, field identity,...) information, and we abstract this explicit or implicit

structure as Model.

Looking forward to the linkage to inversion software, we note that Model represents only

that part of the input simulator data which is part of the solution of the inverse problem,

that is, m in (1). Other parameters not participating in m are not included in Model. For

example, source parameters may be fixed in an inversion for velocities etc., in which case

source parameters do not appear in Model, but are implicitly regarded as part of the fixed

structure of State. On the other hand, if the energy source is part of the information sought

in the inversion, then parameters describing it must also be included in Model.

Similarly, the Data type (representing d in (1)) encapsulates all survey geometry and

sampling information, along with data samples - this information must exist somewhere in

the implementation, so we regard it as part of this object, either explicitly or implicitly.

Note that an array of SEGY traces, for example, is a data structure explicitly containing

this auxiliary information, and would form a natural basis for a Data type.

In terms of these types, we can formally identify the necessary initialization functions:

• initialize static(State, Model) initializes the static fields in the simulator State

from the information in Model;

• initialize dynamic(State) initializes the dynamic fields State (typically, to a qui-

escent initial state, specified a priori);

• initialize sampler(Sampler, State, Time, Data) connects the sampler with the

dynamic field representation in State and with the external data structure Data. Since

the Data object contains time sampling information, this function also initializes the Time

object.

As stated in the last section, we have assigned the sampler the role of source insertion, and

presume that the Data object also contains any necessary geometric and other information

about the source not included in State.

This initialization brings up a fundamental point about the nature of seismic survey

simulation: a survey is a collection of experiments, rather than a single trial, so the ab-

16 W. Symes, D. Sun, M. Enriquez

stract simulator framework needs to accommodate multisimulations. For each simulation,

the earth remains the same, so the material parameter (static) fields need only be initial-

ized once. The dynamic fields however should be reinitialized for every simulation. Thus

initialize static will be called once per multisimulation, initialize dynamic once per

simulation. The Sample object must store information about the locations of sources and

receivers, and possibly other information about the acquisition geometry. This information

likely changes from simulation to simulation, so initialize sample function will be called

once per simulation, and (re)calculates the relation between the sampling parameters and

state vector. This function has access to the extent of the survey, so it is natural to have it

return a boolean, true if more simulations are to be performed, false otherwise.

Note: as will be explained in the Discussion section, inversion based on extended modeling

may require that material parameter fields be updated with each simulation.

We can now give a complete description of the modeling algorithm, which runs the Sim

timestepping loop:

initialize_static(State,Model)

while (initialize_sample(Sample, State, Time, Data))

initialize_dynamic(State)

run Sim<State,Step,Sample,Time>

The Born simulation algorithm (10) defines an evolution of the the state vector per-

turbation δu, but also involves the state vector u and the perturbed and unperturbed

control vectors δm and m. As for the state vector, it’s natural to pack this information

(m,u, δm, δu) into a LinState object. We elected to construct the LinState type so that it

includes a State - that is, LinState contains two pairs (m,u) and (δm, δu). The joint step

(for perturbation fields first, then for background fields) defined in SIM and BORN SIM is

captured in a LinStep function. The sampling operator S applies to δu (BORN SIM (2.3))

but is otherwise the same, assuming that it’s linear; the Data output type remains the same

(assuming linear sampling) and the Time “clock” object as well. Supplying other necessary

functions with obvious naming conventions, the linearized simulation becomes

From Modeling to Inversion: Designing a Well-Adapted Simulator 17

initialize_lin_static(LinState,LinModel)

while (initialize_sample(Sample, LinState, Data, Time))

initialize_dynamic(LinState)

run Sim<LinState,LinStep,Sample,Time>

The adjoint state evolution ADJ SIM uses a state object of the same structure as that of

the linearized simulation, that is a LinState - the adjoint state vector λu contains precisely

the same fields as the Born state δu. The adjoint step AdjStep implements the two steps in

ADJ SIM (2.2). The input data for the adjoint simulation has exactly the same structure as

the output data for the linearized simulation - that is, the Data output type for the basic

modeling task represents both. As one sees from the ADJ SIM loop structure, the adjoint

evolution is backwards in time, so the implementation requires a “clock” object AdjTime

which runs backwards, but is initialized in the same way as Time.

The simulation however must have an additional attribute: it must be able to deliver

random access to simulation times. Such a random-access simulation object RASim cannot

simply follow the pattern laid down in SIM, but can be built in one of several ways, which

we will review below. Amongst many methods one might choose to speficy the target time

step at each time of the adjoint loop ADJ SIM, we prefer a synchronization object AdjSynch

which couples the (backwards-in-time) adjoint time step to the simulator RASim - the role

of this object (that is, of a suitable function associated to it) is to make sure that the time

step at which u is evaluated in ADJ SIM (2.2) is n− 1, in the notation of the last section.

This object will couple an adjoint time step AdjStep with an RASim object, so that the two

can be used together. An adjoint sample function AdjSample (implementing ST) must also

be supplied.

With these conventions, a pseudo-code implementation of ADJ SIM is

initialize_adj_statlic(LinState,Model)

construct AdjSynch(AdjStep, RASim<State,Step,Sample,Time>)

while (initialize_sample(AdjSample, LinState, Data, AdjTime))

initialize_adj_dynamic(LinState)

18 W. Symes, D. Sun, M. Enriquez

while (AdjTime())

AdjSample(LinState....)

AdjStep(LinState)

AdjSynch(LinState)

The question remains, how to construct a random-access simulation object RASim. Func-

tionally, all methods are the same: they move the state from the current time to a target

time. Two obvious methods to update the time index to n are:

• restart the simulation at the initial time n = 0 and simulate until time step n;

• run the full simulation (3), storing all time levels 0, . . . , N ; to access the state at time

n, retrieve it from storage.

The first option has a computational cost of O(N) times that of a single simulation, and

is excessively expensive relative to other options for all but the smallest simulations. The

second option has been used surprisingly often, but requires excessive storage, and indeed

impossibly large amounts for 3D problems of typical exploration geophysics dimensions.

For time-reversible problems, the dynamics can simply be run backwards if n < m, lead-

ing to the most efficient possible algorithms in terms of both floating point operations and

storage. If the dynamics are time-reversible in most of the domain, as is the case for acous-

tics or linear elasticity with absorbing boundary conditions, then a small region around the

time-reversible volume can be stored and used to supply boundary conditions for backwards-

in-time evolution (Gauthier et al.(1986); Dussaud et al.(2008)). (Clapp(2009)) proposed an

elegant variation on this idea, using a random region in the boundary to cause the field

to act diffusively there, thus permitting time-reversal of the dynamics with small error and

without any extra storage at all.

For dissipative dynamics, such as viscoelasticity with typical Qs and Qp values for sedi-

mentary rocks, time reversal is impossible and methods that use only forward time stepping

are required. Various intermediate options to the two mentioned above have been explored,

such as storing only some of the time levels and interpolating. Of these, the best per-

From Modeling to Inversion: Designing a Well-Adapted Simulator 19

formance is obtained from the so-called optimal checkpointing methods (Griewank(1992);

Blanch et al.(1998); Griewank(2000); Symes(2007)), which save state vectors at a selection

of intermediate times (“checkpoints”). To compute the state at an arbitrary time n, the

algorithm retrieves from storage the stored checkpoint immediately before n and runs the

evolution (3) forward from that time to n. In the context of ADJ SIM, further storage sav-

ings are feasible: since times are accessed in reverse order, only the checkpoints needed for

times near N need be stored at early stages. When a checkpoint has been used to com-

pute all subsequent times, it can be overwritten with an earlier checkpoint. This further

tradeoff of computation and storage permits ADJ SIM to be accomplished in O(N log N)

time steps and O(log N) storage, and these numbers are provably optimal in a precise sense

(Griewank(2000)).

4 COMPONENTS OF OPTIMIZATION ALGORITHMS

Having organized the modeling and related algorithms in the preceding paragraphs, it is

now necessary to describe how these algorithms fit together to define the components of an

optimization approach to full waveform inversion. Before describing a natural development

of this transition layer of software, we explore briefly the nature of these components, and

what their nature implies for implementation. We will refer to a software implementation

of these components as a vector calculus package, since the concepts of vector calculus form

the essential mathematical underpinning.

The function value and gradient are the primary ingredients in unconstrained opti-

mization algorithms for smooth objective functions, and are also key components for con-

strained optimization algorithms such as Sequential Quadratic Programming (Nocedal &

Wright(1999)). For nonlinear least squares problems such as least squares full waveform in-

version, the fundamental relations (1) and (2) imply that expression of algorithms requires

types for vectors, operators (vector-valued functions), and linear operators, such as the Ja-

cobian DF and its transpose DF T . We refer to the Jacobian as a linear operator, rather

than a matrix, because only access to the action on a vector (the residual vector F [m] − d

20 W. Symes, D. Sun, M. Enriquez

in (2)) is actually required - access to the matrix elements of the Jacobian is not. In fact,

DF is a dense matrix of prohibitive size, for problems of industrially relevant dimensions

(even in 2D). Time-stepping methods in effect factor DF into a product of extremely sparse

factors, which makes its multiplication by a vector vastly cheaper than general matrix mul-

tiplication of the same dimensions. Matrices for which only matrix-vector multiplication is

provided (rather than access to matrix entries) have come to be called linear operators.

These mathematical abstractions can be realized computationally in a vast variety of

ways. In all cases, the vectors representing model and data are of central importance, and

properly contain more data than merely the samples. In one way or another, either explicitly

or implicitly, the additional information (beyond samples) needed to interpret the vector data

must be available at those points where it is needed - numerical PDE solvers require grid

information, filtering and muting operations require time-grid information, interpolation and

sampling operations require position information for sources and receivers, and so on. This

is a very familiar concept - seismic disk and tape formats such as SEGY group data samples

together with other identifying information, for example.

Note however that none of that additional physical information is proper to the expression

of optimization algorithms of gradient-descent type, widely and correctly regarded as the

most appropriate for these problems. Consider for instance the steepest descent method with

line search globalization. Using a simple backtracking line search, this algorithm reads

0. choose a maximum step factor αmax > 0, a relative reduction tolerance 0 < β < 1 and

a gradient length tolerance ǫ > 0

1. compute J [m], p = ∇J [m] via (2), r = pT p;

2. if
√

r ≤ ǫ stop;

3. else set α = αmax;

3.0 set m+ = m− αp.

3.1 compute J [m+]

3.2 if J [m+]− J [m] > −αβr, α← α/2, go to 3.0.

3.3 else set m = m+, go to 1.

From Modeling to Inversion: Designing a Well-Adapted Simulator 21

This extremely simple algorithm is actually usable. Examination reveals a need for four

types of computation:

• evaluation of m 7→ F [m]; m, δm 7→ DF [m]δm; m, d 7→ DF [m]T d;

• inner products like pT p;

• linear combinations like m+ = m = αp;

• provision of vector workspace like p, m+.

At no point in the expression of this algorithm are the components (samples) of the various

vectors accessed directly, nor are any of the additional geometric or physical attributes

necessary for interpretation of the vectors as simulator data. Instead, if we have black-

box computations of the F and its relatives, inner product, linear combination, and vector

creation (memory management), we can proceed. Obviously the components of m play a

role in evaluation of J [m], as does the other non-sample information associated with m.

However at the level of the algorithm just described, all of that detail is hidden.

Note that constraints such as positivity or physical bounds on material parameters would

impose constraints on the model update beyond those described in our simple algorithm.

Many common algorithms for constrained optimization (notably those of the active set class,

such as LBFGS-B (Zhu et al.(1997))) have implementations involving explicit manipulation

of coordinates, but in fact all of these can be hidden behind projection operators and similar

abstract devices.

In order to formulate algorithms that will apply to a variety of models and data types

without alteration, the data hiding just mentioned is essential. This data abstraction can be

accomplished in a variety of ways, but all define in some way or another an abstract vector

type, providing all of the attributes necessary to express algorithms like the one above, while

deferring other attributes (samples, grids, units, coordinates,...) to subtypes, which use them

to implement the basic vector attributes.

22 W. Symes, D. Sun, M. Enriquez

5 FROM MODELING PACKAGES TO OPTIMIZATION COMPONENTS

.

The penultimate section explained how a modeling package for inversion might be struc-

tured internally, and the last described the natural components of gradient-descent opti-

mization algorithms. It is now possible to describe in general terms the necessary structure

of the interface between vector calculus and modeling packages.

A conventional approach bases the vector calculus package on a concrete universal data

structure with minimal attributes, usually an intrinsic array type. Optimization code im-

plemented in Fortran, C, or Matlab typically entails this approach: the data structure ma-

nipulated by such packages is simply the array. This approach presumes that all additional

information required for interpretation of such data structures as defining material parame-

ter fields or other modeling components must reside entirely in the modeling package. That

is, the modeling data structures Model, Data effectively define subtypes of a single rigidly

defined concrete vector data type.

Inversion applications built on this principle are unnecessarily error-prone, difficult to

maintain in the face of component evolution, and very hard to extend to new models and

optimization approaches. The exchange of data between the two software layers is entirely a

feature of the modeling package, which must be equipped with packing/unpacking functions

which are peculiar to each optimization implementation. Thus the two sides of the inversion

application interpenetrate and lose modularity. Furthermore, data on the optimization side

is completely anonymous - it has lost all identifying features of the fields which it represents.

This anonymity is an invitation to egregious errors, and also works against any natural

modifications of vector operators, such as scaling of inner products by volume elements,

which actually do partake of the modeling-side data attributes. Time-honored hacks around

this problem include data exchange via common blocks and void * parameters, reverse

communication, and straightforward modification of all function interfaces to pass necessary

information. None of these hacks alleviate the lack of modularity and extensibility inherent

in the design.

From Modeling to Inversion: Designing a Well-Adapted Simulator 23

[h!]

Figure 1. Mechanism of information-sharing between vector calculus, modeling software: each

defines an interface to common data structures for material parameter grids, data traces, and other

principal data types treated as vectors in the mathematical description of inversion. These dual

interfaces allow read and write access (as appropriate) for either package, to the same underlying

data.

Vector calculus packages designed around the data abstraction principles explained in

the last section allow a much looser coupling between simulator and optimization data types.

This independence of internal representation is at the heart of our proposal for construction

the inversion applications. Given data abstraction, there is no reason whatsoever for the

modeling package to employ the same software infrastructure as does the vector calculus

package. The sole necessary point of contact between the two is the underlying data of the

various vectors. This underlying data must be exposed to both packages and shared in some

way; from exposure onwards, the two types of algorithm (modeling, vector operations) can

be implemented with complete independence.

This relationship is depicted in Figure 1. The vector calculus object m and the modeling

data type Model represent the same material parameter fields. This commonality is real-

ized by having both reference the same underlying external data structure, which need be

identical with neither. The same situation obtains with the data vector d and its modeling

representation Data: both reference a common data structure, which need not be part of

either.

The loose coupling between vector calculus, modeling, and external data structures is

24 W. Symes, D. Sun, M. Enriquez

particularly natural when the external data resides on disk or is distributed over the web.

In fact, rewriting procedural algorithms to accommodate such non-incore data forces the

introduction of data abstraction, at least to some extent.

Once a connection between data objects is established along the lines depicted in Figure

1, the two sides of the inversion application proceed independently but completely in tandem.

For example, provision of vectors m, m+ and p in the steepest-descent algorithm described

above entails (implicitly) the formation of three Model objects (which only need to be realized

on access to the modeling package). If we indicate the Model object associated with m by

Model[m], and the others similarly, then steps 3.0 and 3.1 of the algorithm are realized as

3.0 set m+ = m− αp.

3.1 compute J [m+]:

3.1.0 compute F [m+] = r:

initialize static(State,Model[m+]);

while (initialize sample(Sample, State, Time, Data[r]))

initialize_dynamic(State)

run Sim<State,Step,Sample,Time>

3.1.1 return J [m+] = 1
2
(r − d)T (r − d).

In each transition between the vector calculus and modeling packages (indicated by change

of font in the foregoing display), the collaboration passes through the external data, which

both reference.

6 PUTTING IT ALL TOGETHER: IWAVE++

The preceding sections have given a complete, if abstract, description of a system of func-

tions and types which can envelope a modeling package in supporting software to create an

inversion application. This system is so organized as to imply minimal modifications of the

simulator itself, provided that its design adheres to a few basic rules as explained in section

2.

From Modeling to Inversion: Designing a Well-Adapted Simulator 25

This section reviews the implementation of IWAVE++, a framework that takes advan-

tage of the concepts discussed in previous sections to build a variety of inversion applications.

6.1 Modeling: IWAVE

IWAVE is the name of the modeling package created by our group to assist the SEG Ad-

vanced Modeling (SEAM) project in verification of synthetic seismic data. Several main

principles guided the design of this package:

• IWAVE is coded entirely in ISO C, following the 1999 standard.

• Nonetheless, the design of IWAVE is highly modular and object-oriented.

• Its target task is time-stepping simulation for regularly gridded fields.

• Its performance is adequate to carry out modeling on the scale envisaged by SEAM,

with the maximum accuracy attainable with contemporary finite difference methods. See

(Fehler(2009)) for an account of the SEAM verification effort and the requirements which it

placed on modeling performance.

The principal designer of IWAVE was Igor Terentyev, then a graduate student in our research

group (Terentyev(2009)). He was assisted by Tetyana Vdovina, Xin Wang, and William

Symes. The first version (1.0) was released to the public in late 2009 (Terentyev et al.(2010)).

Several subsequent releases have added functionality, and more releases are planned.

IWAVE separates into two parts, generic and model-specific. The generic part consists

of a base package supplying parameter parsing and other utility services, i/o packages for

various standard data structures, and a model-independent simulation package, defining

structures and functions playing the roles assigned to State, Time, Step, and Sample in

preceding sections. The generic simulation package declares number of atomic function sig-

natures for which implementations must be provided to define a working application, and

uses these to create a time step including finite difference stencil execution and data exchange

between processes linked by MPI. Parallelization is achieved by domain decomposition; all

information about the parallel framework, including neighbor lists, ghost cell buffers, and

local grid definitions, is computed from the output of the atomic functions - in other words,

26 W. Symes, D. Sun, M. Enriquez

parallelization is fully automated, with all calls to MPI implemented in the generic package.

The design of the generic package is described in Terentyev’s MA thesis (Terentyev(2009)).

The model-specific part of IWAVE contains implementations of the atomic functions

mentioned in the last paragraph, and driver (main program) source. The package currently

contains a fully functional implementation of acoustics created for the SEAM verification

effort; various other elastic and viscoelastic modleling applications are under development.

This acoustic modeling package will accommodate 1D, 2D, or 3D models, with either free

surface or PML absorbing boundary conditions on any face of the rectangular domain (Hu

et al.(2007)). The package implements staggered grid (leapfrog) finite difference schemes

(Virieux(1984); Virieux(1986); Levander(1988b); Moczo et al.(2006)) of order 2 in time and

2k, k = 1, . . . , 7 in space. It is an extremely conservative implementation: many simple and

not-so-simple go-fast tricks, such as expanding computational domains and stretched grids,

are not employed, consistent with the original benchmark role intended for the package. It

has successfully simulated shots over the SEAM model (in which a single single-precision

field occupies 80 GB, and the simulation outputs up to 500,000 traces) using thousands of

cores of a large cluster, and small 2D models on laptops, and many models sizes in between.

The acoustics implementation follows the pattern laid out in section 2. The timestep

functions, amongst the atomic functions which must be supplied to implement any IWAVE

application, are arranged in the form of successive updates, with bulk modulus and bouyancy

fields as the linear parameters. Other atomic functions read various combinations of physical

quantities from files and convert these to bulk modulus and bouyancy, for user convenience.

The timestep function accepts (essentially) the State struct as its main argument, which

has some consequences for the implementation of the generalized timestep function (12), as

we shall explain.

We emphasize two additional properties of IWAVE, embedded in the generic part of the

package, that will be important in the sequel:

• IWAVE is by default out-of-core oriented: it is primarily designed to read input data

from disk files, and write output data to disk files.

From Modeling to Inversion: Designing a Well-Adapted Simulator 27

• Job control in IWAVE runs through a parameter table or associative array, typically

instantiated from a file containing “key=value” pairs. Amongst the parameters are filenames

for the files containing key data structures such as material parameter grids and data traces.

The Model and Data data structures are implicit in these parameters (represented by the

contents of the named files) and the State, Sampler, and Time objects are initialized from

these. The model-dependent atomic functions mentioned earlier convert these parameters

into structural information peculiar to the particular model, and this structure information

is used by the generic part of the package to complete the construction of State and Step.

6.2 Vector Calculus: RVL

The Rice Vector Library, or RVL, is described at length in (Padula et al.(2009)). It provides

definitions of data types which allow the expression of coordinate-invariant algorithms of

based on vector calculus, including many effective algorithms in iterative linear algebra and

constrained and unconstrained numerical optimization. Of the several languages available

that support user-level definition of types (aka object-oriented programming), we chose C++

for development of RVL, in part because it is a superset of C hence offers immediate access

to most high-performance computing libraries such as MPI and CUDA.

C++ realizes types (beyond the built-in types) as classes, which group data and functions

together and are supported by services which ease initialization and cleanup. The main

classes defined in RVL are designed around vector calculus concepts. Their mnemonic names,

and principal functions, are:

• Vector: scaling, addition, inner product, set to zero, reference to Space in which it is a

member

• Space: creates Vectors (workspace factory), comparison with other spaces,

• Functional - (possibly nonlinear) scalar-valued function: value, gradient

• Operator - (possibly nonlinear) vector valued function: value, derivative (as linear op-

erator)

• LinearOp - linear vector-valued function: value, adjoint

28 W. Symes, D. Sun, M. Enriquez

RVL provides many other auxiliary classes and functions which are useful in constructing

inversion and other simulation-driven applications. Some of these will be mentioned below.

However note that the fundamental classes, listed above, reflect precisely the mathematical

objects that figure in the steepest descent algorithm described in section 4 and similar

optimization and linear algebra algorithms: these algorithms can be formulated entirely in

terms of RVL classes and their attributes.

The classes listed above are abstract base classes: they define what objects of various

types must do (interface declaration), but not how they do it - that is, implementations

are lacking (for the most part). Use of RVL implies construction of a set of derived classes

implementing subtypes, for which all functions are completely defined.

6.3 Middleware: TSOpt

TSOpt (Enriquez & Symes(2009)) defines base classes for Time, Step and Sample types

introduced in section 3, and uses these to define a collection of canonical simulator loops.

The Step type and the Sim loops defined in terms of it depend on a State type (via the

C++ template mechanism), which is intended to represent the State type of section 3. As

mentioned there, State objects must provide access to time. Any Sim is supplied with a

mechanism to set a target (final) simulation time, and references a State.

Some Sims are unidirectional in time, and will enter an error condition (throw an excep-

tion, in C++-ese) if the target time is set earlier than the current time, as recorded in the

referenced State. Others are bidirectional.

TSOpt provides several implemented random access Sim subtypes (RASims, in the diction

of section 3). All of these depend on a Stack type, for which TSOpt provide a base class -

this is an abstraction of the commonplace stack data structure, used to record whatever in-

termediate State data (checkpoints). We also provide several implemented Stack subtypes,

for use in computationally small settings. For large scale problems, Stack implementation

may involve a mixture of in-core and out-of-core storage, so part of the effort involved in

using TSOpt for such problems lies in creating an appropriate Stack subtype.

From Modeling to Inversion: Designing a Well-Adapted Simulator 29

Finally, TSOpt includes implementations for synchronization objects, such as AdjSynch

in algorithm REF, which tie together a Step object and a Sim - this task is best accomplished

with an object, rather than a function, as the relation is persistent. TSOpt thus provides

ready-to-use implementations of several key ingredients in the adjoint state algorithm.

6.4 Synthesis: IWAVE++

It should be evident at this point that the raw ingredients of an inversion software solution

are mostly present in the packages described up to this point (RVL, IWAVE, TSOpt). Several

additional steps are required, however, to synthesize these packages into a solution.

One low-level technical detail we have neglected in our conceptual description of IWAVE

and TSOpt is that IWAVE is written in C: therefore combinations of structs and functions

that play the roles of State, Step, Sample, and so on are not actually C++ classes as

expected by TSOpt. Thus we must develop “wrapper” code to generate classes which im-

plement their important member functions to the via calls to IWAVE functions, and use

IWAVE structs as data members. For the most part, this is a straightforward process.

The only interesting aspect of this development originates in a conceptual nonconformity:

recall that (a) as explained in section 3, the linearized state type should in essence include

two (basic) states, each a pair (m,u) of static and dynamic components. On the other

hand, the generalized time step function (12) defined in section 2 takes three arguments -

a dynamic variable to be updated, an input dynamic variable, and a static variable. This

interface is not in the form indicated for LinStep in section 3.

Of the many possible resolutions to this mismatch, we chose one which involves no copy-

ing of floating point data and takes direct advantage of the already implemented State

“virtual type” in IWAVE. The solution is explained in Figure 2 and its caption: it involves

copying only of pointers, and allows the maximum re-use of IWAVE code. The modified gen-

eralized time step interface takes three IWAVE State arguments, rather than two dynamic

and one static state variable. In this way, the State remains encapsulated until it must be

exposed for the actual loops of the time step function. The IWaveState and IWaveLinState

30 W. Symes, D. Sun, M. Enriquez

classes so implemented are part of IWAVE++, and have all of the necessary attributes of

the TSOpt State type.

Other aspects of the IWAVE-TSOpt linkage are straightforward.

Second, we must define the common linkage to external data depicted in Figure 1, through

which the modeling package (IWAVE/TSOpt) and the vector calculus package (RVL) will

communicate. The data structures to be linked on the modeling side are already defined:

these are the model and data components of IWaveState and IWaveLinState. The choice of

external data representation is natural, given the out-of-core nature of IWAVE: we presume

that the external data object is a structured disk file. Many of the many possible file struc-

tures, we elected to use the RSF file structure for material parameter fields (Fomel(2009)),

and SEGY for seismic traces (Barry et al.(1980); Cohen & Stockwell(2008)). The third el-

ement for each type of external data is an appropriate RVL Vector class, representing the

left-hand-side of the arrow in Figure 1. Since RVL Vectors implement low-intensity oper-

ations like scaling, vector addition, and inner product, communication costs will probably

overwhelm any benefit of distribution, on the scale of modeling cost. Therefore we imple-

ment these operations as disk-to-disk filters running on the root process. The corresponding

Space classes generate Vector workspace of these types, which involves creation of files.

We distinguish between archival workspace, for which filenames are externally supplied, and

temporary workspace, for which temporary filenames are generated via one of the Unix temp

filename utilities. Temporary workspace files are removed from the file system on destruction

of their corresponding objects.

One other aspect of this linkage must be addressed: the roles assigned to data files in

IWAVE is regulated by a parameter table, as explained in subsection 6.1. For files, the key

in the “key=value” pair indicates the role of the data contained in the file, and the value is

the filename. Thus a sound velocity field stored in an RSF file structure foo.rsf would be

indicated by

velocity=foo.rsf.

For an RVL Vector of the RSF type to provide an input velocity file to IWAVE, both the

From Modeling to Inversion: Designing a Well-Adapted Simulator 31

Figure 2. Construction of IWaveLinState. In this diagram, the lower case descriptions represent

IWAVE structs which constitute the principal data of IWAVE++ classes (with upper case). An

IWaveLinState object consists of three IWAVE state structs. Construction begins by initializing

the first two IWAVE state objects from file data. Each consists of static and dynamic discrete

fields - for acoustics, the former are bulk modulus κ and bouyancy b, the latter are pressure p and

velocity v. The first IWAVE state object consists of (m,u) = (κ, b, p,v) (as in the left box), the

second of (δm, δu) = (δκ, δb, δp, δv). Both are read from files as directed by the IWAVE parameter

table driven i/o functions. Next, pointers to the static perturbation parameters δκ, δb are copied

to the third IWAVE state struct, which has had no memory allocated to it, and pointers to the

static reference parameters κ, b are copied over the pointers to static perturbation parameters. A

generalized IWAVE time step function takes the form int gts(r,p,c); in which r, p, and c are

IWAVE state structs. This function takes the dynamic fields to be udpated from its first argument

r, the dynamic fields to be used on the right hand side of the update from p, and the static

(material parameter) fields from c. An IWaveLinState containing three IWAVE structs ref state,

lin state, and dmod, as indicated in the diagram, is updated by the IWaveLinStep object via three

calls to the gts function: first with r = p = c = lin state, which executes the first update in

BORN SIM (2.1); second, with r=lin state, p=ref state, c=dmod, which executes the second

update in BORN SIM (2.1); and third, with r = p = c = ref state, which executes the third

update in BORN SIM (2.1). ADJ SIM is implemented similarly.

32 W. Symes, D. Sun, M. Enriquez

fact that the associated file stores a velocity, and the name of the file, must be extracted

from the RVL Vector’s data and passed through to IWAVE. Since the file data completely

determines both realizations (as RVL Vector and as a component of IWAVE internal state),

this information must be present in the file as well. Accordingly, we have extended the RSF

header file structure to include data type information, as for example

data_type = velocity

and provided a function that parses this information and adds the appropriate line to the

IWAVE parameter table. We have also added a scale parameter to the header to permit

on-the-fly conversion between metric units.

Ultimately we intend to replace this device with encoding for units, which are intrinsic

to the data and imply both data type and conversion to any internal units.

Finally, we have not yet addressed the last step: the way in which the structure so far built

up defines an RVL operator. TSOpt defines a generic RVL Operator interface, but there are

enough special features in this structure that a one-off operator interface seemed advisable.

This IWaveOp class defines three member functions which transfer filenames to parameter

tables as needed, initialize State and Sample objects, create Sims as necessary, and run the

timestepping loops needed to define F , DF , and DF T , according to the pattern set out

in section 3. Because of the linkage with the specialized RVL vector classes, cartooned in

Figure 1, calling these member functions is equivalent to evaluation of various RVL Operator

methods.

6.5 Numerical examples

Our exposition would be incomplete without a couple of examples, illustrating that a package

can be built according to the principles we have outlined, and will perform as required:

modeling and its auxiliary operations combine with optimization algorithms based on vector

calculus to carry out successful inversions. We give two 2D examples, one of quality control

type, the other a revival of examples from a seminal paper.

From Modeling to Inversion: Designing a Well-Adapted Simulator 33

6.5.1 A dot-product test

The dot-product test assesses the quality of the adjoint operator implementation DF [m]T ,

by comparing the data space inner product 〈DF [m]δm , δd〉D with the model space inner

product 〈δm , DF [m]T δd〉M , for randomly generated 2D model perturbation vectors δm =

(δκ, δb) and δd. Except for the random assignment of vectors, this test lies entirely within the

realm of RVL base class attributes. RVL also provides an abstract interface for evaluation

of componentwise functions such as random sample assignment, and uses this interface to

compose a AdjTest function, a call to which performs the dot product tests. We have used

AdjTest many times to assess the accuracy of the IWAVE++ adjoint (RTM) operator

for acoustic modeling. The example presented here uses a simple homogeneous model m

(κ = 11109 MPa, ρ = 2100 kg/m3 for which sound velocity is c = 2.3 km/s). A point source

with a 15 Hz Ricker pulse is located at the position z = 40, x = 3300 m, and receivers are

placed at positions z = 80 m, x = 2650 + i ∗ 20 m for i = 0, . . . , 49. We used a mean-zero

pseudorandom number generator to create input vectors δm and δd, sampled on the 10m

square computational grid. The computational domain is 1.8 × 6.6 km. The scattered wave-

field DF [m]δm is shown in Figure 3. The bulk modulus component of the migrated model

perturbation DF T [m]δd is shown in 4; the bouyancy component is very similar.. Table 1

displays the two inner products, and their difference relative to an estimate for the size

of the bilinear form - note that some normalization reflecting the sizes of all three factors

(δm, δd, and DF [m]), is necessary for a meaningful assessment. Somewhat arbitrarily, we

select 100 times the machine precision (maximum relative roundoff, approximately 10−7 for

the single-precision arithmetic used in this example) as the cutoff level for success in this

comparison; it is achieved.

6.5.2 FWI: the “Camembert” model

We used IWAVE++ to recreate the milestone “Camembert” full waveform inversion experi-

ments of (Gauthier et al.(1986)). We present one of our recreations here, as well as the result

of an interesting test not included in the original paper.

34 W. Symes, D. Sun, M. Enriquez

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e
(s

)

2800 3000 3200 3400 3600
Offset (m)

Figure 3. Born modeling acoustic synthetic shot gather (DF [m]δm) resulting from homogeneous

background m and random δm.

0

500

1000

1500

D
ep

th
 (m

)

0 2000 4000 6000
Offset (m)

Figure 4. Migrated bulk modulus (component of DF [m]T δd) with random δd.

From Modeling to Inversion: Designing a Well-Adapted Simulator 35

〈DF [m]δm , δd〉D -2.91666225e+06

〈δm , DF [m]T δd〉D -2.94833250e+06

‖DF [m]δm‖M‖δd‖D 3.05501747e+09

〈|(DF [m]δm , δd〉D−〈δm , DF [m]T δd〉M |
‖DF [m]δm‖M‖δd‖D

1.03666343e-05

100 ∗ macheps 1.19209290e-05

Table 1. Standard RVL test for accuracy of adjoint operator pair: adequate quality if model space

and data space inner products differ by less than a modest multiple of machine precision, relative

to data-space norms of input and output data perturbations.

The Camembert model consists of a circular perturbation, the diameter of which is

about ten wavelengths (500 m), superimposed on a homogeneous medium of bulk modulus

κ0 = 2.5× 104 MPa and density ρ0 = 4× 103 kg/m3. Inside the circular perturbation zone,

the bulk modulus is 20% higher than in the surrounding region, that is, 3.0× 104 MPa.

This model is set up on a grid of 200× 200 points with ∆x = ∆z = 5 m. Eight sources

and 100 receivers are located respectively at positions (110× s, 40) m for s = 1, 2, . . . , 8 and

(10× r, 80) m for r = 0, 1, . . . , 99 (the reflection configuration from (Gauthier et al.(1986))

To recreate one of the tests, we synthesized data (using IWAVE). In this experiment, the

source pulse is a Ricker wavelet of central frequency about 50 Hz. Figure 5 shows the inverted

bulk modulus after 5 iterations. Only the boundary of the perturbation is found, that is,

its higher spatial frequency components. The objective function decreased by more than an

order of magnitude; inspection of the residual data shows that its energy is concentrated in

the lower end of the data passband.

This example was central to a major message of (Gauthier et al.(1986)), namely that

inversion of bandlimited reflection data is very difficult: the estimated model is unlikely

to update the slowly varying model components, hence will exhibit mispositioned and/or

imperfectly focused reflectors. One interesting variation on this experiment is therefore to

remove the bandlimitation. We performed an inversion using data created with a low-pass

filter with high-cut at 60 Hz. Figure 6 shows the inverted bulk modulus after BFGS 5 it-

36 W. Symes, D. Sun, M. Enriquez

0

0.2

0.4

0.6

0.8

z
(k

m
)

0 0.2 0.4 0.6 0.8
x (km)

2.2 2.3 2.4 2.5 2.6 2.7
x104

MPa

(a)

0

0.2

0.4

0.6

0.8

z
(k

m
)

0 0.2 0.4 0.6 0.8
x (km)

2.2 2.3 2.4 2.5 2.6 2.7
x104

MPa

(b)

Figure 5. Camembert model, reflection configuration, Inverted bulk modulus, 5 BFGS iterations,

50 Hz Ricker source: (a) true bulk modus model; (b) inverted bulk modus model.

erations. Except for aperture-induced artifacts, the full spatial bandwidth of the velocity

anomaly is recovered, and the decrease in the objective function is almost two orders of

magnitude, decisively greater than in the bandlimited example.

7 BEYOND INVERSION: EXTENDED MODELING

The paper from which we have taken the “Camembert” examples, (Gauthier et al.(1986)),

was the first of many to explore the intrinsic difficulty of inversion of long wavelength

model components. It appears that, as a function of velocity, the least squares objective

(1), in all of its variants, has multiple local minima at many models differing significantly

from the optimal model. This difficulty is less severe for transmission than for reflection

data, as was clear from the examples in (Gauthier et al.(1986)) and verified in much recent

work (Pratt(1999); Brenders & Pratt(2007a); Krebs et al.(2009); Plessix(2009); Brossier

et al.(2009); Plessix et al.(2010); Vigh et al.(2010)). High S/N at low frequency is also very

helpful (Bunks et al.(1995); Shin et al.(2001); Sirgue & Pratt(2004); Cheong et al.(2006))

From Modeling to Inversion: Designing a Well-Adapted Simulator 37

0

0.2

0.4

0.6

0.8

z
(k

m
)

0 0.2 0.4 0.6 0.8
x (km)

2.2 2.3 2.4 2.5 2.6 2.7
x104

MPa

Figure 6. Camembert model, reflection configuration, Inverted bulk modulus, 5 BFGS iterations,

60Hz low-pass filter source (true bulk modulus model same as in Figure 5).

for both reflection and transmission data (the second “Camambert” example above is an

illustration of this fact). In general, it appears that for reflection configurations, sufficiently

high S/N at sufficiently low frequency will be difficult to obtain.

Two other methods are in widespread use for determining velocity models from reflec-

tion data of conventional bandwidth. Reflection tomograophy (Bishop et al.(1987); Delprat-

Jannaud & Lailly(1993); Billette & Lambaré(1998)) replaces waveform data with reflec-

tion traveltime or slope picks, therefore is not directly comparable to Full Waveform In-

version. Migration velocity analysis (“MVA”) (Kleyn(1983); Yilmaz & Chambers(1984);

Deregowski(1990); Lafond & Levander(1993); Liu & Bleistein(1995); Yilmaz(2001)) uses

waveform data directly, by optimizing attributes of prestack migrated image volumes which

express consistency between data and velocity structure. MVA can have a large interpreta-

tional or manual component, but several researchers have proposed to make MVA quanti-

tative via an optimization principle. Some of these proposals rely on a semblance measure

related to stack power or image matching (Toldi(1989); Biondi & Sava(2004); Soubaras &

38 W. Symes, D. Sun, M. Enriquez

Gratacos(2007)). Others measure data-model compatibility via similarity of nearby image

sections. This differential semblance approach, introduced in (Symes(1986)), has a number

of variants; the survey paper (Symes(2008)) gives extensive references.

As explained in (Symes(2008)), differential semblance (and in fact migration velocity

analysis in general) depends on extended modeling: that is, on an extended model space M̄,

a model extension operator χ : M → M̄, and an extended modeling operator F̄ : M̄ → D

so that F [m] = F̄ [χ[m]] for every m ∈ M. Prestack migration, from this point of view, is

simply the application of the adjoint of the extended Born modeling operator, that is, the

image volume for a velocity model m and data d is simply I = DF̄ [χ[m]]T d. Quantitative

MVA is then the minimization over m of

JrmMV A[m] =
1

2
‖ADF̄ [χ[m]]T d‖2

in which A is a so-called annihilator. Stack-power, image-matching, and differential sem-

blance MVA can all be expressed this way, with various choices of A.

Some mathematical, and much numerical, evidence points to a tentative verdict: so long

as A is chosen in the fashion suggested by the differential semblance principle, JMVA is effec-

tively unimodal - that is, lacking in local minima other than models which are kinematically

consistent with the data. The differential semblance method appears to share this property

with reflection tomography, but uses waveform data instead of traveltime picks.

As shown in (Symes(2008)), minimization of JMVA is in fact a waveform inversion method

for the “joint” Born modeling operator (m, δm) → DF [m]δm: that is, simultaneous inver-

sion for “velocity” m and “reflectivity” δm. It is natural to think that full waveform inversion

itself could also be formulated in terms of extended models, and that this nonlinear modifi-

cation of differential semblance MVA could remove some of the limitations associated with

the failure of Born modeling to account for multiply reflected energy, while retaining the

unimodularity property noted above.. The formal structure of this approach is described in

(Symes(2008)), and early numerical results appear there and in Sun’s MA thesis (Sun(2009);

Sun & Symes(2009)).

From Modeling to Inversion: Designing a Well-Adapted Simulator 39

We now turn to the inclusion of extended modeling in the software framework we have

proposed in the preceding sections. Two variants of extended modeling underly commonly

used MVA algorithms, as is explained in (Symes(2008)): surface oriented and depth-oriented.

7.1 Surface-oriented extension

In the first variant of extended modeling, the extended model space M is embedded in

a space of functions of subsurface location and source position (or some other acquisition-

related parameter - we use source position here for convenience. That is, an (ordinary) model

is m(x, y, z), whereas an extended model takes the form m(x, y, z, xs, ys). The modeling op-

erator is identical to the usual one, except that a different model is used for each source.

Almost nothing changes in the computational framework, except that the static field ini-

tialization moves inside the simulation loop: in contrast to the basic algorithm presented in

section 3,

while (initialize_sample(Sample, State, Time, Data))

initialize_static(State,Model,Data)

initialize_dynamic(State)

run Sim<State,Step,Sample,Time>

The initialize static function must now use information from the Data object to select (pos-

sibly by interpolation) an appropriate Model.

Note that in the adjoint loop ADJ SIM, the initialization λm = 0 moves inside the

simulation loop; it is part of initialize adj static, which also moves inside the loop:

construct AdjSynch(AdjStep, RASim<State,Step,Sample,Time>)

while (initialize_sample(Sample, LinState, Data, AdjTime))

initialize_adj_statlic(LinState,Model}

initialize_adj_dynamic(LinState)

while (AdjTime())

AdjSample(LinState....)

40 W. Symes, D. Sun, M. Enriquez

AdjStep(LinState)

AdjSynch(LinState)

and AdjSample accumulates into the current Model object (part of LinState).

Altogether, this extension mode is quite straightforward. See (Sun(2009)) for an example

computation.

7.2 Depth-oriented extension

In this extension, related conceptually to shot-geophone migration (Claerbout(1971)), the

material parameter vector m becomes a vector of operators. A natural physical interpretation

is that the extension permits action-at-a-distance: some of the material parameters (for

example) are Hooke tensor components mediating between stress and strain, and permitting

these parameters to become operators means that the dependence of stress on strain is non-

local.

In this interpretation, material parameters depend on at least some additional spatial

vectors (that is, act as the kernels of the operators): for example, m̄(x, y, z, hx, hy). The

action of such a parameter on a dynamical field parameter via a partial time step operator

L is represented as an integral, at least formally:

L[m, u] =

∫ Hmax(x,y)

Hmin(x,y)

dhx

∫ Hmax(x,y)

Hmin(x,y)

dhym(x, y, z, hx, hy)u(x + hx, y + hy, z). (13)

Note that this action is still bilinear. For physical (ordinary) material parameters, m̄(x, y, z, hx, hy) =

m(x, y, z)δ(hx)δ(hy) = χ[m](x, y, z, hx, hy).

In a sense, this extension is even simpler, as absolutely nothing changes about the com-

putational framework, except the definition of (some of) the partial time step operators.

These changes are opaque to the rest of the framework.

For this extension to be practical, the computational cost of matrix multiplication in

every time step, inherent in any discretized version of (13), must be mitigated somehow.

Standard MVA practice suggests one approach: assume that the Hooke fields are physical

From Modeling to Inversion: Designing a Well-Adapted Simulator 41

(i.e. Hmin(x, y), Hmax(x, y) ≃ 0 except at a discretely sampled selection of midpoints (x, y).

Thus the cost per time step is reduced to matrix multiplies at only the “analysis” midpoints.

As explained in (Symes(2008)), for this type of extension, the adjoint map DF̄ [χ[m]]T

is a prestack RTM shot-geophone imaging operator as discussed by (Biondi & Shan(2002)),

for instance.

8 CONCLUSION

The design discussed in this paper accomplishes three major goals:

• reuse of modeling time step functions in Born and adjoint modeling;

• transfer of high-performance computing features, such as parallelization and sophisti-

cated algorithmic options, from modeling to inversion software without requiring extensive

rewrites; and

• modular implementation of optimization and high-level modeling algorithms (such as

checkpointing for reverse time loops), without sacrifice of performance.

Some of the design features developed in this paper, such as the role of bilinear stencil

operators in organizing the several modeling functions that underly gradient-based inversion,

are unavoidable consequences of the mathematics. Others, such as use of an external and

independent data representation to connect the internal data structures of vector calculus

and modeling components of an inversion algorithm, are the results of more subjective design

decisions which are, we believe, well-supported by the end result.

While we have for the most part devoted our attention to standard FWI, we have also

noted that the design extends in a straightforward fashion to MVA-motivated extended

modeling, and so can serve as the foundation for an approach to FWI which may avoid the

well-known “local minimum” problem.

In this paper, we have avoided any detailed description of low-level implementation

issues such as choice of language, and have in particular presented no actual code. We

made apparently natural decisions on language and similar choices in implementing our

42 W. Symes, D. Sun, M. Enriquez

demonstration framework, IWAVE++. Some of the references describing the constituents of

IWAVE++ (IWAVE, TSOpt, RVL) delve into these issues, and complement the description

in this paper of the natural abstract roles that these packages play, and how they interact

to form a complete inversion application. This system of abstract roles could serve as the

foundation for many implementations beyond the one we have created, with many of the

same advantages.

Those readers wishing to inspect the code may download the currently available packages

from The Rice Inversion Project’s software distribution web site (Terentyev et al.(2010)).

9 ACKNOWLEDGMENTS

The work reported here was partially supported by the National Science Foundation under

grant DMS 0620821, and by the sponsors of The Rice Inversion Project. The SEAM project

provided partial support for the development of IWAVE. Development of RVL and TSOpt

was supported in part by the National Science Foundation under grants DMS-9973423,

DMS-9973308, and EAR-9977697, by the Department of Energy under Contracts 74837-001-

03-49 and 86192-001-04-49 through the Los Alamos National Laboratory Computer Science

Institute (LACSI), by the Department of Energy EMSP grant DE-FG07-97-ER14827, by

grants from ExxonMobil Upstream Research Co.,and by the sponsors of The Rice Inversion

Project.

REFERENCES

Akcelik, V., Bielak, J., Biros, G., Epanomeritakis, I., Fernandez, A., Ghattas, O., Kim, E., Lopez,

J., O’Hallaron, D., Tu, T., & Urbanic, J., 2003. High resolution forward and inverse earthquake

modeling on terascale computers, in Proceedings, Association for Computing Machinery.

Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Curfman McInnes, L., & Smith, B. F.,

2001. PETSc home page.

Barkved, O., Heavey, P., Kommedal, J. H., van Gestel, J.-P., Synnove, R., Pettersen, H., Kent,

C., & Albertin, U., 2010. Business impact of Full Waveform Inversion at Valhall, in Expanded

Abstracts, pp. 925–929, Society of Exploration Geophysicists.

From Modeling to Inversion: Designing a Well-Adapted Simulator 43

Barry, K., Cavers, D., & Kneale, C., 1980. SEG-Y - recommended standards for digital tape formats,

in Digital Tape Standards, Society of Exploration Geophysicists, Tulsa.

Benson, S., Curfman McInnes, L., Moré, J., Munson, T., & Sarich, J., 2007. TAO user manual

(revision 1.9, Tech. Rep. ANL/MCS-TM-242, Mathematics and Computer Science Division,

Argonne National Laboratory, http://www.mcs/anl.gov/tao.

Billette, F. & Lambaré, G., 1998. Velocity macro-model estimation from seismic reflection data by

stereotomography, Geophysical Journal International , 135, 671–680.

Biondi, B. & Sava, P., 2004. Wave-equation migration velocity analysis - I: Theory, and II: Subsalt

imaging examples, Geophysics, 52, 593–623.

Biondi, B. & Shan, G., 2002. Prestack imaging of overturned reflections by reverse time migration,

in Expanded Abstracts, pp. 1284–1287, Society of Exploration Geophysicists.

Bishop, T.N., Bube, K.P., Cutler, R.T., Laingan, R.T., Love, P.L., Resnick, J.R., Shuey, R.T.,

Spindler, D.A., & Wyld, H.W., 1987. Tomographic determination of velocity and depth in

laterally varying media, Geophysics, 50, 903–923.

Blanch, J.O., Symes, W. W., & Versteeg, R., 1998. A numerical study of linear inversion in layered

viscoacoustic media, in Comparison of Seismic Inversion Methods on a Single Real Dataset ,

edited by R. Keys & D. Foster, Society of Exploration Geophysicists, Tulsa, OK.

Brenders, A. & Pratt, G., 2007. Full waveform tomography for lithospheric imaging: results from

a blind test in a realistic crustal model, Geophysical Journal International , 168, 133–151.

Brenders, A. & Pratt, G., 2007. Efficient waveform tomography for lithospheric imaging: impli-

cations for realistic, 2-d acquisition geometries and low frequency data, Geophysical Journal

International , 168, 152–170.

Brossier, R., Operto, S., & Virieux, J., 2009. Seismic imaging of complex onshor structures by

two-dimensional elastic frequency-domain full-waveform inversion, Geophysics, 74, WCC63–

WCC76.

Bunks, C., Saleck, F., Zaleski, S., & Chavent, G., 1995. Multiscale seismic waveform inversion,

Geophysics, 60, 1457–1473.

Cheong, S., Pyun, S., & Shin, C.-S., 2006. Two efficient steepest-descent algorithms for source

signature-free waveform inversion: synthetic examples, Journal of Seismic Exporation, 14, 335–

345.

Claerbout, J. F, 1971. Toward a unified theory of reflector mapping, Geophysics, 36, 467–481.

Clapp, R. E., 2009. Reverse time migration with random boundaries, in Expanded Abstracts, pp.

2809–2813, Society of Exploration Geophysicists.

Cohen, J. K. & Stockwell, Jr. J. W., 2008. CWP/SU: Seismic Unix release no. 39: a free package

for seismic research and processing, Center for Wave Phenomena, Colorado School of Mines.

44 W. Symes, D. Sun, M. Enriquez

Delprat-Jannaud, F. & Lailly, P., 1993. Ill posed and well posed formulation of the reflection

traveltime tomography problem, Journal of Geophysical Research, 98, 6589–6605.

Deregowski, S.M., 1990. Common offset migrations and velocity analysis, First Break , 8, 225–234.

Dussaud, E., Symes, W. W., Williamson, P., Lemaistre, L., Singer, P., Denel, B., & Cherrett, A.,

2008. Computational strategies for reverse-time migration, in Expanded Abstracts, pp. 2267–

2271, Society of Exploration Geophysicists.

Enriquez, M. & Symes, W. W., 2009. An overview of timesteping classes for optimization, Tech.

Rep. 09-33, Department of Computational and Applied Mathematics, Rice University, Houston,

Texas, USA.

Fehler, M., 2009. SEAM Phase I Progress Report: numerical simulation verification, The Leading

Edge, 28 (3), 270–1.

Fomel, S., 2009. Madagascar web portal, http://www.reproducibility.org, accessed 5 April 2009.

Gauthier, O., Tarantola, A., & Virieux, J., 1986. Two-dimensional nonlinear inversion of seismic

waveforms, Geophysics, 51, 1387–1403.

Griewank, Andreas, 1992. Achieving logarithmic growth of temporal and spatial complexity in

reverse automatic differentiation, Optimization Methods and Software, 1, 35–54.

Griewank, A., 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differenti-

ation, Society for Industrial and Applied Mathematics (Frontiers in Applied Mathematics 19),

Philadelphia.

Heroux, M. A.., Barth, T., Day, D., Hoekstra, R., Lehoucq, R., Long, K., Pawlowski, R., Tuminaro,

R., & Williams, A., 2003. Trilinos: object-oriented, high-performance parallel solver ligraries for

the solution of large-scale complex multi-physics engineering and scientific applications, Tech.

rep., Sandia National Laboratories, Albuquerque, NM.

Hu, W., Abubakar, A., & Habashy, T., 2007. Application of the nearly perfectly matched later in

acoustic wave modeling, Geophysics, 72, SM169–SM176.

Kleyn, A.H., 1983. Seismic Reflection Interpretation, Applied Science Publishers, New York.

Kolda, T. & Pawlowski, R., 2003. NOX: An object-oriented, nonlinear solver package, Tech. rep.,

Sandia National Laboratories, Livermore, CA.

Krebs, J. R., Anderson, J. E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., & Lacasse, M.-D.,

2009. Fast full-waveform seismic inversion using encoded sources, Geophysics, 74, WCC177–

WCC188.

Lafond, C. F. & Levander, A. R., 1993. Migration moveout analysis and depth focusing, Geophysics,

58, 91–100.

Levander, A., 1988. Fourth-order finite-difference P-SV seismograms, Geophysics, 53, 1425–1436.

Levander, A.R., 1988. Fourth order finite difference P-SV seismograms, Geophysics, 53, 1425–1434.

From Modeling to Inversion: Designing a Well-Adapted Simulator 45

Liu, Z. & Bleistein, N., 1995. Migration velocity analysis: theory and an interative algorithm,

Geophysics, 60, 142–153.

Moczo, P., Robertsson, J. O. A., & Eisner, L., 2006. The finite-difference time-domain method for

modeling of seismic wave propagation, Advances in Geophysics, 48, 421–516.

Nocedal, J. & Wright, S., 1999. Numerical Optimization, Springer Verlag, New York.

Padula, A. D., Symes, W. W., & Scott, S. D, 2009. A software framework for the abstract ex-

pression of coordinate-free linear algebra and optimization algorithms, ACM Transactions on

Mathematical Software, 36, 8:1–8:36.

Plessix, R.-E., 2006. A review of the adjoint-state method for computing the gradient of a functional

with geophysical applications, Geophysical Journal International , 167, 495–503.

Plessix, R.-E., 2009. Three dimensional frequency-domain full waveform inversion with an iterative

solver, Geophysics, 74, WCC149–WCC163.

Plessix, R.-E., Baeten, G., de Maag, J. W., Klaassen, M., Zhang, R., & Tao, Z., 2010. Application

of acoustic full waveform inversion to a low-frequency large-offset land data set, in Expanded

Abstracts, pp. 930–934, Society of Exploration Geophysicists.

Pratt, R.G, 1999. Seismic waveform inversion in the frequency domain, part 1: Theory, and verifi-

cation in a physical scale model, Geophysics, 64, 888–901.

Shin, C., Jang, S., & Min, D.-J., 2001. Improved amplitude preservation for prestack depth migra-

tion by inverse scattering theory, Geophysical Prospecting , 49, 592–606.

Sirgue, L. & Pratt, G., 2004. Efficient waveform inversion and imaging: a strategy for selecting

temporal frequencies, Geophysics, 69, 231–248.

Soubaras, R. & Gratacos, B., 2007. Velocity model building by semblance maximization of

modulated-shot gathers, Geophysics, 72, U67.

Sun, D, 2009. The nonlinear differential semblance algorithm for plane waves in layered media,

Tech. Rep. 09-04, Department of Computational and Applied Mathematics, Rice University,

Houston, Texas, USA.

Sun, D. & Symes, W. W., 2009. A nonlinear differential semblance strategy for waveform inversion:

Experiments in layered media, in Expanded Abstracts, pp. 2526–2530, Society of Exploration

Geophysicists.

Sun, D. & Symes, W. W., 2010. IWAVE implementation of Born simulation, Tech. Rep. 10-05,

Department of Computational and Applied Mathematics, Rice University, Houston, Texas,

USA.

Sun, D. & Symes, W. W., 2010. IWAVE implementation of adjoint state method, Tech. Rep. 10-

06, Department of Computational and Applied Mathematics, Rice University, Houston, Texas,

USA.

46 W. Symes, D. Sun, M. Enriquez

Symes, W. W., 1986. Stability and instability results for inverse problems in several-dimensional

wave propagation, in Proc. 7th International Conference on Computing Methods in Applied

Science and Engineering , edited by R. Glowinski & J. Lions, North-Holland, New York.

Symes, W. W., 2007. Reverse time migration with optimal checkpointing, Geophysics, 72, SM213–

222.

Symes, W. W., 2008. Migration velocity analysis and waveform inversion, Geophysical Prospecting ,

56, 765–790.

Symes, W. W. & Santosa, F., 1988. Computation of the Newton Hessian for least-squares solution

of inverse problems in reflection seismology, Inverse Problems, 4, 211–233.

Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation, Geophysics,

49, 1259–1266.

Terentyev, I., 2009. A software framework for finite difference simulation, Tech. Rep. 09-07, De-

partment of Computational and Applied Mathematics, Rice University, Houston, Texas, USA.

Terentyev, I., Vdovina, T., Wang, X., & Symes, W. W., 2010. IWAVE: a framework for wave

simulation.

Toldi, J., 1989. Velocity analysis without picking, Geophysics, 54, 191–199.

Vigh, D., Starr, W., Kapoor, J., & Li, H., 2010. 3d full waveform inversion on a Gulf of Mexico

WAZ data set, in Expanded Abstracts, pp. 957–961, Society of Exploration Geophysicists.

Virieux, J., 1984. SH-wave propagation in heterogeneous media: Velocity stress finite-difference

method, Geophysics, 49, 1933–1957.

Virieux, J., 1986. P-SV wave propagation in heterogeneous media: Velocity stress finite-difference

method, Geophysics, 51, 889–901.

Yilmaz, O., 2001. Seismic data processing, in Investigations in Geophysics No. 10 , Society of

Exploration Geophysicists, Tulsa.

Yilmaz, O. & Chambers, R., 1984. Migration velocity analysis by wavefield extrapolation, Geo-

physics, 49, 1664–1674.

Zhu, C., Byrd, R. H., & Nocedal, J., 1997. L-BFGS-B, FORTRAN routines for large scale bound

constrained optimization, ACM Transactions on Mathematical Software, 23, 550–560.

APPENDIX A: ADJOINT STATE COMPUTATION

In this Appendix, we show a detailed derivation of adjoint state algorithm based on the

basic evolution scheme discussed in section 2. The basic evolution system (3) together with

From Modeling to Inversion: Designing a Well-Adapted Simulator 47

sampling operators Si (i = 0, . . . , N) defines the prediction operator F , i.e., let

~u =



















u0

u1

...

uN



















and S =
(

S0S1 . . . SN
)

, the predicted data for control vector m is given by F [m] = S~u,

where ~u is derived from the system (3). From the definition, the derivative of F at control

m is written as

DF [m] δm = S δ~u (A1)

, where δ~u is derived from the system (10), whose matrix form is:


















δu0

δu1

...

δuN



















=



















0 0 0

DuH [m,u0] 0 0

. . .

0 DuH [m,uN−1] 0





































δu0

δu1

...

δuN



















+



















0

DmH [m,u0]

. . .

DmH [m,uN−1]



















δm. (A2)

Due to the chain rule and the equation (4), we have

DuH [m,v] = W DuHk[m,vk] DuHk−1[m,vk−1] · · · DuH0[m,v0]

= W
0
∏

j=k

DuHj[m,vj]
(A3)

and

DmH [m,v] = W {DmHk[m,vk] + DuHk[m,vk] DmHk−1[m,vk−1] + · · ·

+ DuHk[m,vk] DuHk−1[m,vk−1] · · · DuH1[m,v1] DmH0[m,v0]}

= W

k
∑

j=0

(

j+1
∏

i=k

DuHi[m,vi] DmHj[m,vj]

)

(A4)

48 W. Symes, D. Sun, M. Enriquez

, where vl = Hl−1[m, · · ·H0[m,v] . . .] for l = k, k − 1, . . . , 1 and v0 = v.

Given the assumption that

Hj[m,v] = v + Lj [m,v]

and Lj is a bilinear state-vector valued operator for j = 0, . . . , k, we have

DuHj[m,v]δv = δv + Lj [m, δv] (A5)

and

DmHj[m,v]δm = Lj [δm,v] (A6)

for j = 0, . . . , k.

For the bilinear state-vector values operator Lj (j = 0, . . . , k), we define two kinds of

adjoint operators as follows: for any model vector m and state vectors v1 and v2, the state-

space adjoint LT
j of Lj satisfies

〈Lj[m,v1],v2〉S = 〈v1, L
T
j [m,v2]〉S (A7)

; and the state-model-space adjoint Mj of Lj satisfies

〈Lj [m,v1],v2〉S = 〈m, Mj[v1,v2]〉M . (A8)

Denote by Hu the first matrix on the right hand side of the equation (A2), and by Hm

the second. The equaiton (A2) may be written as

δ~u = Huδ~u +Hmδm

which together with equation (A1) yields:

DF [m] = S(I −Hu)
−1Hm

whence

DF [m]T = HT
m(I −HT

u)−1ST . (A9)

The adjoint state algorithm aims to compute the action of the transposed Jacobian

DF [m]T on a (data-like) vector λd. It proceeds as follows:

From Modeling to Inversion: Designing a Well-Adapted Simulator 49

Step 1: Apply the adjoint sampling operator:

λd 7→ ST λd =



















(S0)T

(S1)T

...

(SN)T



















λd.

Since Sn extracts the data from a state at time step n, its adjoint inserts the data into the

state at time step n.

Step 2 (“backpropagation”):Solve the adjoint state system

(I −HT
u)λ~u = ST λd

for the adjoint state vector λ~u = (λu0, ..., λuN)T . Since HT
u is upper triangular, solution of

this system unfolds into a recursion backwards in the step index:

λuN = (SN)T λd; λun = (DuH [m,un])T λun+1 + (Sn)T λd, n = N − 1, . . . , 0 (A10)

In the update form, the above recursion may be written:

Backward SIM (1) λu = 0;

Backward SIM (2) For n = N − 1, . . . , 0 do:

Backward SIM (2.1) λu+= (Sn+1)T λd;

Backward SIM (2.2) λu = W Tλu;

Backward SIM (2.3) For j = k . . . , 0 do:

λu+= LT
j [m, λu]

Step 3 (“imaging”): apply the operator HT
m to λu, which amounts to computing

N−1
∑

n=0

(DmH [m,un])T λun+1 (A11)

In the update form, the above accumulation may be written:

IMG ACC (1) λm = 0

IMG ACC (2) For n = N − 1, . . . , 0 do:

50 W. Symes, D. Sun, M. Enriquez

IMG ACC (2.1) λu = W Tλun+1;

IMG ACC (2.2) For j = k, . . . , 0 do:

λm+= Mj [u
n
j , λu];

λu+= LT
j [m, λu]

It is natural to accumulate the sum in equation A11 term-by-term as the factors λun are

produced in the backpropagation loop (equation A10).

Hence, combining Step 2 and Step 3, we may write the adjoint evolution as:

ADJ SIM (1) λu = 0, λm = 0;

ADJ SIM (2) For n = N − 1, . . . , 0 do:

ADJ SIM (2.1) λu+= (Sn+1)T λd;

ADJ SIM (2.2) λu = W Tλu;

ADJ SIM (2.2) For j = k, . . . , 0 do:

λm+= Mj [u
n
j , λu];

λu+= LT
j [m, λu]

