The IWAVE++ Inversion Framework

William Symes

Dong Sun

The Rice Inversion Project

Annual Review Meeting

Dec 9, 2010

- Goal: make IWAVE capabilities large-scale, parallel, extensible FD modeling available for research on inversion/imaging driven by time-domain simulation
- Method: embed IWAVE in Rice Vector Library (RVL) Operator type, use RVL utilities (linear algebra, construction of least squares functions, etc.) and algorithms (CG, NLCG, LBFGS,...) to construct inversion applications.

Agenda

From Modeling to Inversion

2 Numerical Experiments & Discussion

3 Summary and Future Work

Simulation-driven Inversion

Waveform Inversion:

$$\label{eq:gradient} \begin{split} \min_{m \in \mathcal{M}} J[m] &:= \frac{1}{2} \, \|\mathcal{F}[m] - d\|_{\mathcal{D}}^2 \end{split}$$
 Gradient $\nabla J[m] = D\mathcal{F}[m]^T \, (\mathcal{F}[m] - d)$

- \mathcal{M} : Model Space , $\mathcal{D}~$: Data Space
- \mathcal{F} : $\mathcal{M} \to \mathcal{D}$ modeling operator ($\mathcal{F} = Su, u$ wavefield, S sampling operator)
- $D\mathcal{F}[m]$: derivative map of \mathcal{F} at m (Born operator)
- $D\mathcal{F}[m]^T$: adjoint operator of $D\mathcal{F}[m]$

Abstraction Discrepancy & Solution

Inversion involves two levels of abstraction:

- applications of *F*, *DF*[*m*], *DF*[*m*]^T
 involve solution of PDE's, depending on specific physics and numerical realization, ...
- optimization algorithm

only involve generic linear algebra operations, independent of specific representation or modeling construction

Abstraction Discrepancy & Solution

Object-oriented programming offers a solution to share information between vector calculus & modeling sofware

Both sides provide interfaces to reference the same common data structures for model grids, data traces, \dots , which need not be part of either

In our case, the external data objects are structured disk files (RSF file structure for model parameter, SEGY for seismic traces)

- vector calculus (RVL) operations perform as disk-to-disk filters
- IWAVE has its own i/o functions and is regulated by parameter table

Abstraction Discrepancy & Solution

A solution (WWS, DS & ME,10; DS & WWS, TR10-05, TR10-06):

- \bullet wrap ${\cal F}$ as a C++ class (RVL operator) for vector valued functions, with methods to
 - $\bullet \mbox{ do modeling } \mathcal{F}[m]$
 - apply first derivative (action of Born Map $D\mathcal{F}[m]$)
 - apply adjoint derivative (adjoint action of Born Map $D\mathcal{F}[m]^T$)
- auxiliary classes:
 - \bullet State classes for $(m,u),(m,u,\delta m,\delta u)$ with necessary methods
 - Sampler classes to link $u, \delta u$ with data $d, \delta d$
 - Stack class to manage dynamic wavefields at specific time levels
 - Algorithm classes to update fields, read/write $m, \delta m,$ initialize $u, \delta u$...

Forward, Born and Adjoint Simulation

Model problem:

$$\frac{1}{\kappa(\mathbf{x})}\frac{\partial p}{\partial t} + \nabla \cdot \mathbf{v} = f(\mathbf{x}, t)$$
$$\frac{1}{b(\mathbf{x})}\frac{\partial \mathbf{v}}{\partial t} + \nabla p = 0$$

$$d = \mathcal{F}[m] := S\mathbf{u}$$
$$\mathbf{u} = (p, \mathbf{v}), S \text{ sampling operator } (Sp := p(x_r, t))$$

Simulation

$$\begin{array}{l} \textit{SIM (1) } \mathbf{u} = 0 \\ \textit{SIM (2) For } n = 0, \dots, N-1 \textit{ do:} \\ \textit{SIM (2.1) do: } p += -\Delta t \; \kappa \; \nabla \cdot \mathbf{v} := L_0[m, u] \\ \mathbf{v} += -\Delta t \; b \; \nabla p := L_1[m, u] \\ \textit{SIM (2.2) } \mathbf{u} += R\mathbf{f} \\ \textit{SIM (2.3) } d += S\mathbf{u} \end{array}$$

Forward, Born and Adjoint Simulation

Born Simulation

```
BORN SIM (1) \mathbf{u} = 0, \delta \mathbf{u} = 0;
BORN SIM (2) For n = 0, ..., N - 1 do:
         BORN SIM (2.1) do:
                                                   \delta p \mathrel{+}= -\Delta t \kappa \nabla \cdot \delta \mathbf{v} := L_0[\mathbf{m}, \delta \mathbf{u}]
                                                  \delta p += -\Delta t \ \delta \kappa \ \nabla \cdot \mathbf{v} := L_0[\delta \mathbf{m}, \mathbf{u}]
                                                     p += -\Delta t \kappa \nabla \cdot \mathbf{v} := L_0[\mathbf{m}, \mathbf{u}]
                                                     p += -\Delta t \kappa \nabla \cdot \mathbf{v} := L_0[\mathbf{m}, \mathbf{u}]
                                                  \delta \mathbf{v} = -\Delta t \ b \ \nabla \delta p := L_1[\mathbf{m}, \delta \mathbf{u}]
                                                  \delta \mathbf{v} = -\Delta t \ \delta b \ \nabla p := L_1[\delta \mathbf{m}, \mathbf{u}]
                                                    \mathbf{v} = -\Delta t \ b \ \nabla p := L_1[\mathbf{m}, \mathbf{u}]
                                                     \mathbf{v} = -\Delta t \ b \ \nabla p := L_1[\mathbf{m}, \mathbf{u}]
         BORN SIM (2.2) \mathbf{u} \models R\mathbf{f}
         BORN SIM (2.3) \delta \mathbf{d} \models S \delta \mathbf{u}
```


Forward, Born and Adjoint Simulation

Adjoint Simulation

 $\begin{aligned} & \text{ADJ SIM (1) } \lambda \mathbf{u} = (\lambda p, \lambda \mathbf{v}) = 0 \\ & \text{ADJ SIM (2) For } n = N, \dots, 1 \text{ do:} \\ & \text{set time in } \mathbf{u}, \mathbf{d} \text{ to } n - 1; \\ & \text{ADJ SIM (2.1) } \lambda \mathbf{u} \mathrel{+}= S^T \lambda \mathbf{d}; \\ & \text{ADJ SIM (2.2) do:} \end{aligned}$

$$\begin{split} \lambda b &\models= -\Delta t \; \lambda \mathbf{v} \; \nabla p := L_1[\lambda \mathbf{u}, \mathbf{u}] \\ \lambda \mathbf{v} &\models= \Delta t \; b \; \nabla \lambda p := L_1[m, \mathbf{u}] \\ \lambda \kappa &\models= -\Delta t \; \lambda p \; \nabla \cdot \mathbf{v} := L_0[\lambda \mathbf{u}, \mathbf{u}] \\ \lambda p &\models= \Delta t \; \kappa \; \nabla \cdot \lambda \mathbf{v} := L_0[m, \lambda \mathbf{u}] \end{split}$$

Agenda

I From Modeling to Inversion

Numerical Verifications with the "Camembert"

Principle example in O. Gauthier, J. Virieux and A. Tarantola (1986): *Two-dimensional Nonlinear Inversion of Seismic Waveform: Numerical Results* (first published exploration of iterative FWI with multi-D data and multi-D models)

Fig. 5. The model is now a circular inclusion (the "Camembert") in a homogeneous medium. The size of the Camembert is about 10 wavelengths. The model is numerically defined in a grid with 200 × 200 points, so the model contains 10⁴ parameters (unknowns for the inversion).

- 1 km imes 1 km domain
- background: v = 2.5 km/s, ρ = 4 g/cm³
- $\bullet\,$ peak frequency \sim 50 Hz
- circular bulk modulus anomaly, diam = 0.5 km, "small" = 2% or "large" = 20%
- "nonlinear saturation" at 10% - full wavelength traveltime perturbation
- 5 m grid 10 gridpts / (peak) wavelength
- absorbing BCs on all sides

Numerical Verifications with the "Camembert"

Numerical Verification of $D\mathcal{F}[m]$ with reflection configuration:

- 100 receivers (fixed spread), $z_r = 80, x_r = 0, 10, ..., 990 \text{ m}$
- 8 sources, $z_s = 40, x_s = 110, 220, ..., 880 \text{ m}$

$$\left|\frac{\mathcal{F}(\mathbf{m} + \mathbf{h} \delta \mathbf{m}) - \mathcal{F}(\mathbf{m} - \mathbf{h} \delta \mathbf{m})}{2\mathbf{h}} - \mathbf{D} \mathcal{F}[\mathbf{m}] \delta \mathbf{m}\right\| / \|\mathbf{D} \mathcal{F}[\mathbf{m}] \delta \mathbf{m}\|$$

h	relative error	conv rate
1	0.275	
0.9	0.233	1.547
0.8	0.193	1.631
0.7	0.153	1.708
0.6	0.117	1.779
0.5	0.083	1.839
0.4	0.055	1.891
0.3	0.031	1.934
0.2	0.014	1.965
0.1	0.004	1.974
• · -		

Numerical Verifications with the "Camembert"

Numerical Verification of $D\mathcal{F}[m]^T$ with reflection configuration Let $\mathcal{J} := D\mathcal{F}[m]$, adjoint relation holds if

$$\operatorname{AdjErr} := \frac{\left| (\mathcal{J}\delta m \,,\, \delta p) - \left(\delta m \,,\, \mathcal{J}^T \delta p \right) \right|}{\|\mathcal{J}\delta m\| \|\delta p\|} < 100 \ast \operatorname{macheps}$$

$(\mathcal{J}\delta m,\delta p)$	3.89868e+06
$(\delta m, \mathcal{J}^T \delta p)$	3.89868e+06
$\ \mathcal{J}\delta m\ \ \delta p\ $	3.89867525e+06
AdjErr	5.32232070e-06
100*macheps	1.19209290e-05

Dot-product Test with Random Vector

Figure: Born modeling acoustic synthetic shot gather $(DF[m]\delta m)$ resulting from homogeneous background m and random δm .

Figure: Migrated bulk modulus (component of $DF[m]^T \delta d$) with random δd .

Dot-product Test with Random Vector

$\langle DF[m]\delta m,\delta d angle_D$	-2.91666225e+06
$\langle \delta m , DF[m]^T \delta d \rangle_D$	-2.94833250e+06
$\ DF[m]\delta m\ _M \ \delta d\ _D$	3.05501747e+09
$\frac{\langle \left (DF[m]\delta m, \delta d \rangle_D - \langle \delta m, DF[m]^T \delta d \rangle_M \right }{\ DF[m]\delta m\ _M \ \delta d\ _D}$	1.03666343e-05
100*macheps	1.19209290e-05

Table: Standard RVL test for accuracy of adjoint operator pair: adequate quality if model space and data space inner products differ by less than a modest multiple of machine precision, relative to data-space norms of input and output data perturbations.

inversion - reflection - band-limited data with central frequency \sim 50 Hz:

transmission configuration:

- 400 receivers each side like top in reflection
- 8 sources at corners and side midpoints

small anomaly (2%)- band-limited data

Initial MS resid = 2.56 $\times 10^7$; Final after 5 LBFGS steps = 2.6 $\times 10^5$

Large anomaly (20%)- transmission – band-limited data Initial MS resid = 2.14×10^8 ; Final after 5 LBFGS steps = 1.44×10^8

Impulsive Inversion:

Large anomaly (20%)- reflection - impulsive data, 0-60 Hz Initial MS resid = 3.45×10^{13} ; Final after 5 LBFGS steps = 4.78×10^{11}

Agenda

I From Modeling to Inversion

2 Numerical Experiments & Discussion

3 Summary and Future Work

Summary and Future Work

IWAVE++ Inversion Framework:

- demonstrates a design principle for straightforward incorporation of sophisticated modeling techniques in inversion software
- provides a platform for various migration and inversion research and applications
- separates simulation from optimization, which facilitate other research projects

Summary and Future Work

Future Work

- \bullet complement the implementation of IWAVE++ for extended inversion and documentation
- $\bullet\,$ explore LS inversion performance enhancing techniques and add more built-in options to IWAVE++

 $\ensuremath{\ast}$ various regularization strategies

 \ast adaptive scaling

•••• •••

• explore different optimization methods

* trust-region ...

* beyond L_2 norm (methods from other communities)

...

Great thanks to

- Present and former TRIP team members especially Marco Enriquez, Xin Wang, Igor Terentyev, Tanya Vdovina
- Sponsors of The Rice Inversion Project
- NSF DMS 0620821

Thank you!

