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SUMMARY

Phase I of the SEAM Project will produce a variable-density
acoustic synthetic survey over a 3D geological model simu-
lating a deepwater subsalt exploration target. Due to the in-
tended use of the data, the project places a premium on accu-
racy. Commercially produced Phase I synthetics will be spot-
checked against benchmark simulations to assure quality. Thus
the accuracy of the benchmark simulator required careful as-
sessment. The authors designed and implemented the bench-
mark simulator used in this program, subjected it to verifica-
tion tests, and assisted in the qualification phase of the Phase I
project. The key lessons that we have learned so far from this
assessment are that (1) the few verification tools available to us
- a few analytic solutions and Richardson extrapolation - seem
to be adequate, at least in a rough way, and (2) the standard
approach to this type of simulation - finite difference methods
on regular grids - requires surprisingly fine grid steps to pro-
duce small relative RMS errors for models of the type defined
by this project.

INTRODUCTION

Large-scale simulation plays all sorts of roles in science and
engineering, including design evaluation, ”what-if” contingency
testing, and driving simulation-driven optimization. All such
simulations consist in concatenating a large number of approx-
imations of the underlying system of partial differential equa-
tions. Assessing the cumulative effect of these approximations
is the verification problem: how close does the simulator come
to solving the PDEs? Naturally, this question is most interest-
ing when the simulator is really needed, that is, when the true
solution is unknown!

Phase I of the SEAM Project (Fehler, 2009) provides an inter-
esting opportunity for a verification study. The project aims
to produce a synthetic survey over a state-of-the-art 3D geo-
physical model, emulating a subsalt exploration prospect in
the deep water Gulf of Mexico. Numerical modeling provides
the only means for simulating such data. The task is compu-
tationally large by contemporary standards. The model fills a
35 (E-W) × 40 (N-S) × 15 km cube with fine-scale simulated
stratigraphy, rugose and massive salt bodies, and other features
of exploration interest. Phase I requires roughly 65,000 shots
(isotropic point radiator sources), for each of which 450,000
traces will be recorded, with intended fidelity to 25 Hz. The
physics of Phase I wave propagation is variable density acous-
tics, and the model includes gridded compressional wave ve-
locity and density fields.

Since the synthetic data will be produced by commercial enti-
ties whose methodology is opaque, SEAM required some in-
dependent mechanism for accuracy assurance. Project partic-
ipants decided to assure data quality through use of a bench-

mark simulator, of known design and available for public in-
spection and use. The authors designed and tested this bench-
mark simulator, and assisted SEAM in designing a process for
qualifying potential vendors, which included comparison of
vendor and benchmark synthetics. Clearly the accuracy of the
benchmark simulator is critical to the integrity of this quality
assurance design.

We have learned two major lessons from our efforts to ver-
ify our benchmark simulator. First, the tools available to us,
though distressingly limited, seem to be sufficient to give real-
istic assessments of simulator accuracy. Essentially only two
methods are available: comparison with analytic solutions (in
practice, this means homogeneous medium or perfectly reflect-
ing half-space solutions); and error estimation by Richardson
extrapolation (grid refinement). In the AIAA/ASME valida-
tion and verification taxonomy, these are known as “order” and
“solution” verification respectively (AIAA, 1998).

Second, we found that regular-grid finite-difference simula-
tion (Moczo et al., 2006), the standard modeling methodol-
ogy for synthetic seismograms for the last several decades,
suffers from severe accuracy limitations. Our benchmark sim-
ulator was of this type (a staggered grid (2,2k) scheme, de-
scribed below). For reasons we will briefly review, all such
codes are first-order convergent for models of the type used in
SEAM Phase I, regardless of formal order of accuracy (Brown,
1984; Symes and Vdovina, 2008). Practically, this means that
sample-by-sample accuracy is not particularly good, and ob-
taining small percentage RMS error is simply impossible with
any reasonable grid refinement.

In the following paragraphs we will overview IWAVE, our
benchmark simulator; explain the verification strategy employed
in our study; review the accuracy limitations that afflict finite
difference modeling with complex models; and discuss some
of the results of our quality assurance tests for the qualification
round of SEAM Phase I. We will end with a few remarks about
possible directions for the evolution of seismic modeling tech-
nology. We regard the replacement of regular grid finite differ-
ence methods with dramatically more accurate methodology
to be a very high priority, and see several possible avenues for
improvement through the use of finite elements.

IWAVE: A BENCHMARK ACOUSTIC MODELING CODE

A code for the benchmark use described above must be

• based on well-understood principles;

• transparent (open source);

• verifiably accurate;

• fast enough for use in spot-checks of full-scale models;

Transparency and accuracy take precedence over speed.
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IWAVE is a variable density acoustic simulator based on stag-
gered grid finite difference approximation of linear acoustics,
expressed in pressure-velocity form as

1
κ(x)

∂ p(x, t)
∂ t

= −∇ ·v(x, t)+ f (t,x), (1)

ρ(x)
∂v(x, t)

∂ t
= −∇p(x, t). (2)

Here the bulk modulus κ and material density ρ are functions
of position x. The right-hand side f in the first equation repre-
sents the source of acoustic energy as a constitutive law defect.
For SEAM Phase I, f (t,x) = w(t)δ (x), and the source wavelet
w(t) is chosen so that the presure field p(x, t) has a desired
far-field signature.

The staggered grid approximation replaces derivatives appear-
ing in equations 1 with centered differences, defined on a reg-
ular rectangular grid (Virieux, 1984; Levander, 1988). IWAVE
provides a variety of difference schemes of second order in
time, and of user specified order between 2 and 14 in space.
The current IWAVE application is built upon a code framework
for finite difference simulation: it is structured to accommo-
date various intended extensions (Lax-Wendroff higher order
time stepping, optimal stencil coefficients, various flavors of
elasticity...). Package features include

• NPML (Hu et al., 2007) or pressure-release boundary
conditions on any side of the domain boundary, at user
option;

• 1D, 2D, or 3D simulation

• model input as gridded RSF/SEP file structure (Fomel,
2009), any sensible combination of velocity, bulk mod-
ulus, density, bouyancy, any axis order, any scale (units),
native or XDR floats;

• data output as in SU format (SEGY without reel header)
(Cohen and Stockwell, 2008)

• arbitrary source/receiver positions, sample rate via in-
terpolation from computational grid

• calibrated to produce a specified wavelet at specified
offset in free space;

• parallelization via domain decomposition and MPI, also
at loop level via OpenMP, with simple user interface;

• parallelization over shots via subclustering;

• SU-style self-documentation.

A detailed description of the design, along with performance
studies in various parallel environments, may be found in the
second author’s MA thesis (Terentyev, 2009).

SOLUTION VERIFICATION METHODS

Verification and validation have come to have standard mean-
ings in the literature on computational simulation (AIAA, 1998).
Crudely speaking, verification decides whether you’re solving
the equations right (computational accuracy), and validation
whether you’re solving the right equations (physical fidelity).

SEAM pre-empts validation by asserting the adequacy of the
linear acoustic model for the Phase I project. Verification is
important for SEAM for at least two reasons. First, evaluat-
ing seismic modeling technology and stimulating its improve-
ment are explicit project goals. Second, the simulation task is
to be contracted to one or more vendors, who will use what-
ever methods they find convenient to produce synthetic traces.
Thus SEAM must employ some form of quality control to en-
sure that the data are accurate enough to be useful for the pur-
poses envisioned, and that the subsets produced by present and
(possible) future vendors are compatible. [In February 2009
SEAM contracted with Tierra Geophysical for production of
the Phase I data (Fehler, 2009).]

We used two methods of verification, called order and solution
verification in the standard terminology. Order verification is
simply the comparison with known (or manufactured) analytic
solutions. The only analytic solutions available for this project,
requiring only evaluation of elementary functions or interpola-
tion (and not quadrature, for example, which must itself be
verified) are the free space radiation solution and its modifi-
cation by the method of images for a perfectly reflecting half
space.

All other verification involves estimating the error between the
numerical solution and an a priori unknown exact solution.
The only effective technique known to us is Richardson ex-
trapolation, also known as deferred approach to the limit and
various other names (Kincaid and Cheney, 1996). It involves
two assumptions, one theoretically verifiable in some cases,
the other untestable in principle. Assume that computed data
D(∆t) differs from exact data D̄ by

E(∆t) = C∆t p +O(∆t p+1). (3)

Then, assuming that the principal error C∆t p is dominant,

E(∆t)' D(2∆t)−D(∆t)
2p−1

. (4)

With little more work, one can estimate p from D(∆t), D(2∆t),
and D(4∆t). We emphasize that Richardson extrapolation (equa-
tion 4) is like most statistical estimation, in that it is contingent
on an assumption which can only be made plausible, never ac-
tually verified.

LIMITED ACCURACY OF FINITE DIFFERENCE SIM-
ULATION WITH COMPLEX MODELS

It has been known at least since the work of Brown (1984) that
finite difference methods applied to wave problems with dis-
continuous coefficients (material parameters) are generically
of first order accuracy, regardless of the formal order. The er-
ror splits into a familiar part governed by the truncation er-
ror, and a first-order part due to discontinuities in solution first
derivatives at material interfaces. Use of higher order schemes
controls the first part, which is responsible for grid dispersion,
but does not affect the second part (Gustafsson and Wahlund,
2004). Stairstep diffractions are a widely known manifesta-
tion of the second category of error. We have analyzed this
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error component in detail in Symes and Vdovina (2008). Es-
sentially, sampling the coefficients identifies the locations of
interfaces only within the diameter of a grid cell, so the re-
flection arrival time may be in error by as much as the transit
time of a cell. For some schemes, the second error compo-
nent vanishes when material interfaces are aligned with grid
planes (Brown, 1984). As we have shown (Symes and Vdov-
ina, 2008), staggered grid schemes are denied even this plea-
sure: at least one of the grids carrying one of the physical fields
is always misaligned. In fact, we have shown that the equation
3 is not even quite valid with p = 1; the constant C is not con-
stant, but varies over a range depending on the exact relation
between grid and discontinuities in κ or ρ . Still, as illustrated
in (Symes and Vdovina, 2008), the Richardson estimation pro-
cedure (equation 4) still appears to give quite accurate results.
It also shows that “first order” is effectively synonymous with
“large”: it is easy to construct simulations for which the con-
ventional gridpoints-per-wavelength criteria are more than sat-
isfied, but in which RMS errors of reflections are over 100%.

VERIFICATION AND COMPARISON OF SOLUTIONS

In the qualification stage of SEAM Phase I, the project re-
ceived data from a number of potential vendors. As described
by Fehler (2009), these data included traces from (1) homo-
geneous half space with pressure-free surface, (2) a dipping
layer embedded in the half space, and (3) two shot positions to
be simulated over a preliminary version of the SEAM model.
Comparison of the submitted traces with analytic solutions (or-
der verification) eliminated some of the submissions from fur-
ther consideration.

An E-W slice through the SEAM velocity model at the position
of qualification shot 1 appears as figure 1. The complexity of
the model is evident in this cross-section.
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Figure 1: E-W section through SEAM velocity model through
location of qualification shot 1 (E 15 km, N 17 km).

Figures 2 shows various time windows in several vendor-supplied
traces at E 12 km, N 17 km for shot 1, along with the trace
computed by IWAVE using a the (2,10) scheme and 10 m grid
spacing. The traces shown are representative of the more ac-
curate submitted results.

Unfortunately, the specification for the qualification data did
not require that the amplitudes be calibrated, so the plots show
traces independently normalized to unit maximum amplitude
in each window. This mode of comparison understates the ac-
tual differences between the traces.

To gain a better idea of actual errors, we normalized each trace
to have the same total energy over the first 8 s, and computed
RMS relative differences with one of the vendor traces, in the
first three windows displayed in Figure 2. Table 1 displays
these errors, along with the estimated error in the IWAVE com-
puted by Richardson extrapolation (equation 4 with p = 1) ap-
plied to 20 m and 10 m grid results.

RMS Errors, 1 s windows
window 2.4-3.4 s 5.5-6.5 s 7.0-8.0 s

blue 0.16 0.38 0.47
green 0.10 0.35 0.42
black 0.44 0.80 0.77

red (IWAVE) 0.30 0.55 0.63
Richardson 0.31 0.61 0.62

Table 1: Relative RMS errors in each window plotted in Fig-
ures 2(a), 2(b), and 2(c). Each row displays RMS error be-
tween one of the traces, identified by color in the plot, and the
trace plotted in yellow, except for the last, which lists error
estimates for the IWAVE trace derived by Richardson extrapo-
lation.

The most notable features of Table 1 are (1) the RMS errors
beyond the water bottom event (Figure 2(a)) are quite large,
on the order of 60%, and (2) Richardson extrapolation applied
to IWAVE 20 m and 10 m output predicts that the IWAVE 10
m trace differs from the truth by about the same amount. From
this we concluded that the Richardson “error bars” computed
for the IWAVE solution did not suggest that any of the vendor
results displayed in 2 are wrong. Similar exercises with other
traces produced similar conclusions.

CONCLUSION

In one sense, the verification and quality assurance effort re-
ported here was successful. The solution verification technique
produced a usable error estimate for our benchmark simulator.
Several vendors submitted plausible simulation results, which
visually resemble those produced by our code. The variance
of these results, taken together with ours, is approximately
that suggested by Richardson extrapolation. This fact suggests
both that the Richardson error estimate may be realistic, and
that all of these results are as close to each other as the IWAVE
result is to the truth. Therefore we cannot rule any of these
submissions out as more inaccurate than the benchmark. The
visual similarity of the traces also suggests that any of these
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Figure 2: Traces at E 12 km, N 17 km for qualification shot 1
at E 15 km, N 17 km from four candidate vendors (blue, green,
yellow, black) and IWAVE (red), in several time windows.

simulations should be equally useful for the intended imaging
applications.

On the other hand, the estimated errors are distressingly large.
It is also possible to attain a 60% error by scaling the true trace
by 0.4, and that result would be unacceptable. In fact almost
all of the differences between the traces compared in this study
are due to small time shifts between events. We surmise that
the origin of these time shifts is in the second category of fi-
nite difference error, discussed above. Various vendors used
various finite difference schemes, but all are presumably con-
taminated with different versions of the second category error.

Reduction of the error to the proverbial engineering 5% would
appear to require something other than regular grid finite dif-
ference methods. Several authors have proposed methods for
reducing interface-related error over the years (for example
Muir et al. (1992)). In at least one case, a reliable solution is
known. We have recently shown rigorously that a multilinear
(Q1) finite element scheme with mass lumping and numeri-
cal quadrature approximation of the stiffness matrix, applied
to constant density acoustics, produces a pressure field free of
second category error, even when discontinuities in bulk mod-
ulus do not align with the grid. The resulting method is com-
putationally identical to a (2,2k) explicit difference scheme for
the second order wave equation with specific spatial averaging
of the bulk modulus (Terentyev and Symes, 2009). For more
complex problems, the suppression of second category error
requires more than mass lumping. The issue is well-known in
the finite element wave propagation community - see for ex-
ample the discussion in Cohen (2002). The commonplace fix
in spectral element simulation of seismic response is use of
unstructured meshes adapted to material discontinuities, see
Komatitsch et al. (2005). Heterogeneity in the sedimentary
column is too widespread and occurs at too many scales for
this to be a practical remedy for simulation of reflection seis-
mograms. Instead, we see a possible avenue in immersed finite
element methods (Li and Ito, 2006) and their recent general-
ization by Owhadi and Zhang (2008). These methods trans-
fer sub-grid information to stencil coefficients in regular, non-
adapted grids.
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