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SUMMARY

Finite difference simulations in discontinuous media are only
first-order accurate regardless of the formal order of the
method. Stairstep diffractions are a widely known manifes-
tation of this first-order error. To recover the optimal con-
vergence rate, we apply a finite element approach with mass
lumping to a constant density acoustic wave equation. This ap-
proach results in an explicit second-order accurate difference
scheme with specifically averaged sound velocity. Two numer-
ical experiments confirm theoretical convergence rate. In par-
ticular, application of finite element discretizations with mass
lumping leads to elimination of stairstep diffraction observed
in simulations based on standard finite difference discretiza-
tions.

INTRODUCTION

Finite difference (FD) methods have long been accepted in a
seismic industry as an easy-to-implement and computation-
ally efficient tool for forward wave propagation simulations.
these methods have been extensively studied (see, for exam-
ple, Moczo et al. (2006) and references cited therein) and the
properties of FD solutions in smooth media are well under-
stood. Theoretical analysis shows that stable FD methods with
smooth coefficients converge at the rate predicted by trunca-
tion error as time and space steps go to zero. However, this
theory does not apply to models of interest in seismic appli-
cations, since material properties that describe the subsurface
are essentially discontinuous as functions of spatial location.
Brown (1984); Gustafsson and Wahlund (2004) have shown
that FD simulations in heterogeneous media are affected by
two kinds of error. In addition to the error that corresponds
to the truncation error of the homogeneous problem, there is
another error that stems from inability of a FD scheme to re-
solve the position of the interface within a grid cell. The in-
terface misalignment error is insensitive to the order of the
scheme and can easily dominate overall error once grid disper-
sion is controlled. In practice this means that RMS error can
be as large as 100% even when conventional grid-points-per-
wavelength requirements are well satisfied (Symes and Vdov-
ina, 2008; Symes et al., 2008). Reducing RMS error to 5% can
require dramatic spatial oversampling, which suggests that FD
schemes are unlikely to be cost effective for higher accuracy
large-scale simulations.

Several methods that attempt to reduce interface error have
been proposed over the years (Moczo et al., 2006; Zhang and
LeVeque, 1997; Cohen and Joly, 1996). In this work, we con-
sider finite element (FE) approach with mass lumping. By
construction, coefficients of discrete systems resulting from
FE approximations involve integration of the material proper-
ties over grid blocks and, thus, incorporate subgrid information
about the medium. In the case of the constant density acous-

tics, this incorporation of the subgrid information is sufficient
to eliminate first-order error due to sound velocity discontinu-
ities. Symes (2009) proves that for constant density acoustics
and smooth in time right-hand side, mass lumped FE method
preserves optimal order of convergence in energy norm even
if sound velocity is merely bounded and measurable. The jus-
tification is based on the fact that smoothness of solutions in
time in case of constant density acoustics implies enough spa-
tial regularity to give both optimal order of convergence of
the FE approximation and the same order of convergence for
the mass-lumped approximation. For the problems of interest
in reflection seismology, such as simulation of seismograms,
smoothness of solutions in time is a natural feature.

Our goal in this work is to demonstrate that FE method with
mass lumping eliminates numerical artifacts due to the first or-
der error at the cost equivalent to the cost of a FD method of the
same order. We show that the FE scheme with mass lumping
and numerical quadrature approximation of the stiffness ma-
trix produces an explicit difference scheme, which is compu-
tationally equivalent to a regular grid FD approximation with
specific spatial averaging of coefficients. We use two sound
velocity models with interfaces not aligned with the numerical
grid to demonstrate that lumped FE solutions have no evidence
of stairstep diffractions in contrast to FD solutions. In the fol-
lowing sections, we introduce our model problem, discuss FD
and FE methods employed in our study, and present numerical
examples.

MODEL PROBLEM

We study the following 2D acoustic wave propagation problem
in a constant density medium:
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The wave propagation is forced by initial conditions:
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where po(x,7) is a solution of a homogeneous radiation prob-
lem for a point dilatational source. located at x; given by
Kirchhoff formula (Courant and Hilbert, 1962):
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where g(r) represents source time dependence function (“wavelet”).

FINITE DIFFERENCE METHOD

‘We have used FD discretizations of order two in time and 2K,
K =1,2,4 in space to approximate equation (1). The following
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formula defines an approximation of the second derivative of a
function f with respect to a
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where coefficients oy x are chosen so that the order of the
approximation is O(Aa?X) (Cohen, 2002).

Regular grid FD schemes are obtained by replacing the time
and space partial derivatives of p(x,t) by approximations de-
fined by equation (4), then requiring equation (1) to hold at
t = nAt, x; = m;Ax; for appropriate ranges of integers n and
m;, i =1,2. Thus pressure p is defined at integer multiples of
the spatial and time steps.

Regardless of the formal order of accuracy, FD methods ap-
plied to the wave problems with discontinuous material param-
eters are only first-order convergent (Brown, 1984; Gustafsson
and Wahlund, 2004; Symes and Vdovina, 2008). The numer-
ical error consists of two components. The higher-order com-
ponent is responsible for the frequency-dependent grid disper-
sion and can be controlled by higher-order schemes. The other,
first-order component is due to inaccurate interaction of the
numerical wave with material interfaces and is insensitive to
scheme order. Stairstep diffractions are widely known mani-
festations of the latter category of error.

FINITE ELEMENT METHOD

FE method is based on a weak formulation obtained by multi-
plying equation (1) by an arbitrary test function v(x) and inte-
grating over a wave propagation domain € (Ciarlet, 2002):
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We seek an approximate solution in a finite-dimensional space
Vj, in the form
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where functions v;(x) constitute basis of Vj,. We then substi-
tute representation (6) into equation (5) and arrive at the fol-
lowing ODE system:
2A
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with mass and stiffness matrices M = {m;;} and S = {s;;},
i,j=1,...,N, and unknown vector p(r) = [p1(¢),..., pn ()]
The elements of the mass and stiffness matrices are computed
by
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Similarly to FD method, the material discontinuities generally
reduce the formal convergence rate of a FE method to the first
order. However, in a special case of constant density acoustics,
the optimal convergence rate is preserved.

MASS LUMPING

Solution of a non-trivial linear system arising from temporal
discretization of equation (7) at every time step is prohibitively
expensive for large-scale problems and can be avoided by mass
lumping. Mass lumping consists of replacing mass matrix M
by a diagonal matrix M = diag{#,...,/Ay} . Standard lump-
ing approach through application of Gauss-Lobatto quadrature
rules with nodes coinciding with those of the nodal basis of
FE method retains the order of accuracy in case of smooth
coefficients, yet, fails to do so in case of the discontinuous
medium (Cohen, 2002).

In an alternative mass lumping approach, the lumped matrix is
obtained by summing the rows of the matrix M:
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Symes (2009) considers bilinear (0" elements and proves that
in case of the constant density acoustics lumping via equa-
tion (9) preserves optimal order of convergence even when the
sound velocity c(x) is merely bounded and measurable.

IMPLEMENTATION

In this work, we have used Q1 FE discretization with mass
lumping via equation (9) and Gauss-Lobatto quadrature ap-
proximation of the stiffness matrix. This approach results in
a difference scheme which is equivalent to a second-order in

space and time FD scheme with spatially averaged coefficients (9)

and produces pressure field free of stairstep diffractions.

As with standard FD schemes, numerical dispersion of the
method can by controlled by higher-order finite elements. How-
ever, application of higher-order FE methods results in a high-

frequency error in the solution known as parasitic waves (Gustafs-

son et al., 1995). To avoid parasitic waves, we replaced quadra-
ture approximation of the Q! stiffness matrix by higher-order
FD discretizations of Laplacian. Numerical experiments con-
firmed second-order convergence of the resulting methods, and
the expected suppression of grid dispersion with higher-order
Laplacians.

NUMERICAL EXPERIMENTS

In this section we present two numerical examples based on
a simple dipping interface model and a dome structure in 2D.
Both models exhibit interfaces with considerable contrast, not
aligned with the computational grid. We choose function g()
in equation (3) to produce a propagating Ricker wavelet with a
peak frequency of 15 Hz.

In the first experiment, we assume a square domain of the size
4 km by 4 km discretized into 400 x 400 blocks and consider
wave propagation for 0.7 s. We consider a dipping interface
model with sound velocities of 1.5 km/s and 3 km/s in the up-
per and lower parts of the domain, respectively.
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Figures 1(a) and 1(b) compare the results of a second-order in
space and time FD and mass-lumped FE simulations on a 10 m
grid. Figures 2(a) and 2(b) display the results of a fourth-order
in space discretizations. As expected, FE solutions in Fig-
ures 1(b) and 2(b) show no evidence of the stairstep diffraction
effect clearly visible in the FD solutions. From Figures 1(a)
and 1(b) we see that both numerical solutions exhibit some
grid dispersion, especially in the direct wave in the water. Nu-
merical solutions shown in Figure 2 are much less dispersive
due to the higher (fourth spatial) approximation order.

offset (km)

depth (km)

(a) FD solution, square 10 m grid.

offset (km)

depth (km)

(b) Mass lumped FE solution, square 10 m grid.

Figure 1: Comparison of pressure snapshots at 1.5 s of the
second-order in time and space FD (top) and FE (bottom) so-
lutions for Dipping Interface Model.

The sound velocity field used in the second experiment is dis-
played in Figure 3. Figures 4(a) and 4(b) present results of

eighth-order in space FD and FE methods on a 10 m grid. As
in the previous example, FD solution suffers from stairstep
diffraction effect, which is particularly evident near the base
of the dome between 4 and 6 km in depth. In contrast, FE
solution shows no signs of stairstep diffraction.

CONCLUSION

It is well known that in addition to higher-order dispersion er-
ror, FD simulation of waves in highly heterogeneous media is
subject to the first-order interface misalignment error, which
is insensitive to the order of the scheme. In this work, we
show that in a special case of constant density acoustics, the
Q' FE method with mass lumping retains the optimal second-
order convergence rate even when sound velocity discontinu-
ities are not aligned with the grid. Mass lumping combined
with Gauss-Lobatto approximation of the stiffness matrix re-
sults in an explicit difference scheme, which is computation-
ally equivalent to a second-order in time and 2K order in space
FD scheme with stencil coefficients computed by a specific av-
eraging rule. As with FD approximation, application of higher-
order discretization of Laplacian controls the effect of numeri-
cal dispersion and prevents appearance of the parasitic waves.
Our examples are consistent with formal mathematical anal-
ysis, and show that in case of the constant density acoustics
the grid-interface misalignment error can be successfully elim-
inated by finite element approach. Stairstep diffraction, which
is a well known manifestation of the first-order error in case
of standard finite difference-based simulations is not present
in our finite element-based numerical examples.
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Figure 3: Sound velocity field for Dome Model. Source loca-
tion is x; = (3.011km, 4.831km).

offset (km)
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Figure 2: Comparison of pressure snapshots at 1.5 s of the
second-order in time and fourth-order in space FD (top) and
FE (bottom) solutions for Dipping Interface Model.

(b) Mass lumped FE solution, square 10 m grid.

Figure 4: Comparison of pressure snapshots at 0.7 s of the
second-order in time and eighth-order in space FD (top) and
FE (bottom) solutions for Dome Model.
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