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SUMMARY

This paper proposes an alternative approach to the output least-
squares (OLS) seismic inversion for layered-media. The lat-
ter cannot guarantee a reliable solution for either synthetic
or field data, because of the existence of many spurious lo-
cal minima of the objective function for typical data, which
lack low-frequency energy. To recover the low-frequency la-
cuna of typical data, we formulate waveform inversion as a
differential semblance optimization (DSO) problem with arti-
ficial low-frequency data as control variables. This version of
differential semblance with nonlinear modeling properly ac-
counts for nonlinear effects of wave propagation, such as mul-
tiple reflections. Numerical experiments with synthetic data
indicate the smoothness and convexity of the proposed objec-
tive function. These results suggest that gradient-related algo-
rithms may successfully approximate a global minimizer from
a crude initial guess for typical band-limited data.

INTRODUCTION

The full waveform, output least squares (OLS) inversion is
the most common model-based data-fitting approach to the in-
verse problem in reflection seismology of inferring subsurface
properties from shallow-seismic data. OLS inversion is con-
ceptual attractive because: (1) its objective is very simple and
expresses the maximum likelihood criterion, given that exper-
imental errors have Gaussian distributions; (2) it does not re-
quire picked travel time and can take into account essentially
any physics of seismic wave propagation and reconstruct de-
tailed features of subsurface structure.

However, the direct application of OLS inversion in relection
seismology has been strictly limited. The principle impedi-
ment to this approach is well discussed in literature, (Gauthier
et al., 1986; Santosa and Symes, 1989; Tarantola et al., 1990;
Symes and Carazzone, 1991; Bunks et al., 1995; Shin and Min,
2006, just to name a few). Because its objective is very ill-
conditioned and possesses lots of spurious local minima, OLS
inversion doesn’t work with any descent method (mandatory
because of problem size) unless the initial model has the long
scale structure of the true model.

The main factor accounting for the above behavior of OLS in-
version is the band-limitation of typical field data, especially
the lack of low frequencies. Low-frequency data appear to
contain information about the trend of the true model. OLS
inversion cannot infer the model trend from bandlimited re-
flection data. Lots of work has shown that the impedance as
a function of vertical travel time in a layered acoustic medium
could be reconstructed from the impulse response, which con-
tains all frequency components down to 0 Hz, (Bamberger
et al., 1979; Bube and Burridge, 1983; Symes, 1986; Sacks
and Santosa, 1987). For several dimensional problem, numeri-

cal examples indicate that impulse responses may determine
constant-density acoustic models via OLS inversion (Bunks
et al., 1995; Shin and Min, 2006).

With the above observation on the solvability of the impulsive
inverse problem, the thesis of this paper is to introduce a differ-
ential semblance strategy with nonlinear modeling for wave-
form inversion to recover the missing low-frequency compo-
nents in the data and avoid the intrinsic difficulties of OLS in-
version. Differential semblance criterion with Born modeling
has been discussed in detail in (Symes and Carazzone, 1991;
Symes, 1993, 1999; Chauris and Noble, 2001; Mulder and ten
Kroode, 2002; Shen et al., 2003, 2005; de Hoop et al., 2005;
Albertin et al., 2006; Shen and Symes, 2008). The underlying
idea is the concept of semblance of redundant images, i.e., due
to the high redundancy of a typical survey, predictions of some
model parameters are redundant and unlikely to be consistent
(flat in common image panels) unless the velocity model is
correct. This paper presents a nonlinear version of differential
semblance to properly account for nonlinear effects of wave
propagation.

As the first step of developing such an algorithm, this paper
discusses a simple model for reflection seismology — the lay-
ered constant-density acoustic model. The next two sections
decribe this nonlinear differential semblance approach and demon-
strate the smoothness and convexity of its objective via numer-
ical experiments. Finally, the paper ends with a description of
some refinements of this approach.

THEORY AND METHOD

Problem Setting

In the layered constant-density acoustic model, the wave field
potential u(x,z, t) (x,z ∈ IR) is governed by the wave equation(

1
c2(z)

∂ 2

∂ t2 −∇
2
)

u(x,z, t) = wb(t)δ (x,z),

u(x,z, t) = ut(x,z, t)≡ 0, t < 0,

(1)

where c(z) is the acoustic velocity field depending only on the
depth z, and the right-hand side is an isotropic point energy
source with the source wavelet wb(t). Notice that wb(t) is usu-
ally chosen to be band-limited, as is required by observations
of the spectra of seismograms: for various physical limitations,
real reflection seismograms don’t have fourier components at
very low (< ωl Hz) and very high (> ωh Hz) temporal fre-
quencies ∗.

Regarding the source (i.e., wb(t)) as known, the pressure field,
hence the seismogram, becomes a function of the acoustic ve-
locity:

s[c](x, t) :=
∂u
∂ t

(x,0, t), 0≤ t ≤ tmax.

∗The positive numbers ωl and ωh depend on specific physical settings of real experiments.
For example, ωl = 5,ωh = 60.

2526SEG Houston 2009 International Exposition and Annual Meeting

Downloaded 21 Jan 2010 to 168.7.115.118. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Nonelinear DSO

The goal is to find c(z) for 0 ≤ z ≤ zmax from the observed
seismogram sdata such that s[c]' sdata.

The first step of constructing the proposed approach is the in-
troduction of the Radon transformed field

U(z, p, t) =
∫

dxu(x,z, t + px), p ∈ IR.

A staightforward calculation shows that the original problem
becomes a set of 1-D plane-wave problems(

1
v2(z, p)

∂ 2

∂ t2 −
∂ 2

∂ z2

)
U(z, p, t) = wb(t)δ (z),

U(z, p, t) = Ut(z, p, t)≡ 0, t < 0,

(2)

for suitably small p ≥ 0 so that c p < 1, where the vertical
velocity

v(z, p) := c(z)
/√

1− c2(z)p2 , for p < pmax = 1
/

cmax ,

and p denotes the ray parameter (slowness).
The plane-wave seismogram is then defined as

Fwb [c](p, t) :=
∂U
∂ t

(p,0, t)

for (p, t) ∈ P := {(p, t) : |p| ≤ pmax, 0≤ t ≤ tmax} ,

(3)

which presents a forward map Fwb : M −→ D, where D is the
data space, and the model space M denotes a set of possi-
ble velocity models, incorporating bounds on values and other
regularity constraints.

Given the plane-wave seismogram d ∈ D (i.e., d = Sdata
†),

this paper focuses on the inverse problem:

Find c(z) ∈M
such that Fwb [c]' d.

(4)

To explain the construction of the proposed approach, we will
first rewrite the inverse problem (4) via a unifying concept —
— Extended Modeling, introduced in (Symes, 2008) to build
a general framework for the inverse problem of reflection seis-
mology.

Extended Modeling

Take for the extended model space M a set of positive func-
tions c̄(z, p) of depth z and slowness p. The extension map E
simply views a physical velocity c(z) (positive function of z) as
a function of z and p, i.e. as constant in p: E[c](z, p) := c(z).
Then, the corresponding vertical velocity to c̄(z, p) is

v(z, p) := c̄(z, p)
/√

1− c̄2(z, p) p2 ,

and the extended forward map Fwb : M−→ D is defined as

Fwb [c̄](p, t) :=
∂U
∂ t

(p,0, t) for all (p, t) ∈ P, (5)

where U(z, p, t) satisfies (2) with c replaced by c̄. Hence,
the extended modeling operator Fwb satisfies the prerequisite:
Fwb [c] = Fwb [E[c]] for any c ∈M.

†Sdata can be computed from sdata by Radon Radon transform. To focus on the principal
algorithm, we leave out computation and assume that Sdata is known.

Notice that the extension map E is one-to-one, hence enable
one to view the model space M as a subset of the extended
model space, i.e., E[M] ⊂ M. Since the extended models will
be “unphysical” in the sense that c̄(z, p) ∈ M could vary in p,
E[M] consists of the “physical models”.

The extended inverse problem becomes:

given d ∈ D, find c̄(z, p) ∈M such that Fwb [c̄]' d.

A solution c̄ is physically meaningful only if c̄ = E[c] for some
c ∈ M. In that case c becomes a solution of the original in-
verse problem (4), i.e. Fwb [c] = Fwb [c̄] ' d. That is, solving
the inverse problem (4) is equivalent to find a solution to the
extended inverse problem that belongs to E[M]. (Generally,
“'” is in the least-squares sense.)

To turn this inversion into an optimization procedure, one needs
an objective to measure the extent to which a solution to the
extended inverse problem is physically meaningful. Here, we
choose the linear map A[c̄] := ∂ c̄

∂ p , which satisfies the equiva-
lence condition :

c̄ ∈ E[M]⇐⇒ A[c̄] = 0 (coherency condition). (6)

With the above notations, a differential semblance form of the
inverse problem is:

min
c̄∈M

JA[c̄,d] :=
1
2
‖A[c̄]‖2

such that
∥∥Fwb −d

∥∥2
D ' 0.

(7)

Here, the major issue arise in formulating any approach to the
solution of problem (7): how to parametrize the feasible set
F =

{
c̄ ∈M :

∥∥Fwb −d
∥∥2

D ' 0
}

?

An answer to this question comes from the solvability of the
impulsive inverse problem. Next we will extract the relation
between low-frequency data components and extended veloc-
ity models, and build the DS approach based on this relation.

Differential Semblance Approach

Recall that problem (1) is reduced to a set of 1D plane-wave
problems (2) via Radon Transform. The solvability of 1D im-
pulsive inverse problems tells us that with the very-low fre-
quency information, a 1D OLS problem is solvable, i.e. the
inversion could recover the long-scale structure.

For each fixed slowness p, given the source time function

wb(t) =
∫

ωl<|ω|≤ωh

dω e2πiωtg(ω)

and the corresponding reflection response

db(p, t) =
∫

ωl<|ω|≤ωh

dω e2πiωt
η(p,ω),

take
w(t) = wl(t)+wb(t),

where
wl(t) =

∫
|ω|≤ωl

dω e2πiωtg(ω).
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One can associate a vertical velocity v(z, p) for each p with
d(p, t) via the 1-D OLS inversion, where

d(p, t) = db(p, t)+dl(p, t)

and
dl(p, t) =

∫
|ω|≤ωl

dω e2πiωt
η(p,ω).

Then, c̄(z, p) is computed through c̄ = v
/√

1+ v2 p2 .

As a summary, fixing the source wavelet w(t) with low-frequency
components down to 0 Hz and band-limited data db(p, t), the
extended velocity c̄(z, p) becomes a function of the very low-
frequency data dl(p, t) (or η(p,ω) for |ω| ≤ ωl).

We can now state the DS problem as:

min
η(p,ω)

(p,ω)∈Ω

JDS :=
1
2
‖A[c̄]‖2

such that
p∈[0,pmax]

∥∥Fw[c̄](p, t)−db(p, t)−dl [η ](p, t)
∥∥

D ' 0,

(8)

where A[c̄] := ∂ c̄
∂ p , Ω := {(p,ω) : 0≤ p≤ pmax, |ω| ≤ ωl}.

Actually, JDS is continuously differentiable with respect to η .
A straightforward derivation leads to an gradient expression
for the DS objective:

∇JDS = Π DFw[c̄]
(

DFw[c̄]T DFw[c̄]
)† ∂ 2c̄

∂ p2 ,

where Π is a projector from data space onto low-frequency
data controls, DFw is Born extended modeling and DFT

w is its
adjoint, computed by the adjoint state method. The proposed
procedure is summarized as:

Nonlinear DS Algorithm:

Initialization: set c0, d0
l , w(t), ε, etc.

For k = 0,1,2, . . .
1. Compute the sub-OLS problems for c̄[dk

l ];

2. Compute Jk
DS = 1

2

∥∥∥ ∂ c̄[dk
l ]

∂ p

∥∥∥2
. If Jk

DS ≤ εJ0
DS, stop;

else, continue;

3. Compute ∇JDS[dk
l ]. If

∥∥∇JDS[dk
l ]

∥∥≤ ε
∥∥∇JDS[d0

l ]
∥∥,

stop; else, continue;

4. Compute dk+1
l via some descent method.

Please refer to (Sun, 2008) for more details of this approach.

NUMERICAL EXPERIMENTS

In this section, we present some primary numerical experi-
ments (“scan” tests) for a four-layer model (Figure 1(a)) with
the fixed impulsive source time function (plotted in frequency
domain in Figure 1(b)). These tests illustrate the smoothness
and convexity of the DS function, as well as some issues in its
construction which are the subject of ongoing research. The
task is to evaluate the proposed DS objective along line seg-
ments in the space of low-frequency controls, i.e., compute the

DS objective function at a series of data points Dµ (for some µ ∈
[0,1.5]) defined by

Dµ = {(1−µ)Dl pert(pi)+ µDobv(pi)}
Np
i=1, (9)

where data Dl pert(pi) at slowness pi (i = 1,2, · · · ,Np) differ
from the observed data Dobv(pi) only by their low-frequency
components. The low-frequency components (0 to 5Hz) of
Dl pert are the corresponding low-frequency components of the
seismogram derived from the homogeneous velocity model
chom(z) = 2.

Choose Np = 50 and discretize the slowness field p in the way
that p2 is sampled evenly.
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Figure 1: (a) Four-layer velocity model; (b) Normalized source
wavelet in frequency domain (frequency 0 to 25 Hz)).

Experiments with absorbing boundaries

To evaluate the DS objective at a data point, we solve at each
slowness the corresponding 1-D least squares problem for v(z, p),
then compute c̄(z, p) from c̄ = v

/√
1+ v2 p2 , and finally com-

pute the DS objective JDS = 1
2

∥∥∥ ∂ c̄
∂ p

∥∥∥2
.

The curve in Figure 2(a) interpolates samples of the DS objec-
tive at data points Dµ defined by (9) with µ = 0,0.1, · · · ,1.5.
This 1-D slice through the DS objective exhibits the smooth-
ness (at least at the sample scale) and convexity. Also, the min-
imum is achieved at the data point with correct low-frequency
components (µ = 1).
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Figure 2: With absorbing surface: (a) 1-D scan through the DS
objective; (b) 1-D scan through OLS objective

0 0.5 1 1.2
20

40

60

80

100

120

µ

J O
L

S

(a)

0 0.5 1 1.2
0

20

40

60

µ

J D
S

(b)

Figure 3: With free surface: (a) 1-D scan through the DS ob-
jective without postprocessing; (b) 1-D scan through the DS
objective with c̄(z, p) smoothed in p

As a contrast, Figure 2(b) presents a similar “scan” experi-
ment, which evaluates OLS objective function at velocity mod-
els cµ chosen as

cµ (z) = (1−µ)chom + µc∗(z)

with µ = 0.0,0.1, · · · ,1.5. This 1-D scan clearly demonstrates
the multimodality of OLS objective, which badly jeopardizes
the application of gradient-related methods.

Experiments with free surface

An important objective of the proposed algorithm is to account
for nonlinear effects of wave propagation such as multiple re-
flections. Hence, it is desired to know how this DS objective
behaves for problems with free surface, which is an important
cause of multiple reflections. In the following test, the free
surface boundary condition is adopted.

The curves in Figure 3(a) samples the DS objective at data
points Dµ with µ = 0.0,0.05, · · · ,1.2. Though this scan ex-
hibits the convexity near the minimum, it appears to be flat near
µ = 1 and possess some bumps. This adverse behavior may
come from the numerical errors accumulated during all the ap-
proximating computations. Especially, since the 1D OLS in-
versions are done independently and yield different accuracy,
the extended models c̄(z, p) become inconsistent in slowness,
which leads to the noisy behavior of the DS objective.

To improve the behavior of the DS objective, one can adopt
a number of strategies to reduce numerical errors, such as us-
ing smaller tolerance for 1-D inversions, choosing different ex-
pressions of DS objective, and employing some regularization
techniques to smooth c̄(z, p) in p and z, etc.. We have consid-
ered some of these strategies. Figure 3(b) presents the same
scan of the DS objective except that c̄(z, p) is smoothed in p
via minimizing the Total Variation of c̄(z, p) with respect to p
at each z. Now, the scan exhibits the desired smoothness and
convexity.

CONCLUSIONS

This paper presents a nonlinear differential semblance opti-
mization approach to waveform inversion. Numerical exam-
ples show that this objective is convex and achieves an ex-
tremum at the target model. Thus, gradient-related methods
seem promising to solve the proposed DSO problem. Addi-
tional techniques need to be implemented to reduce the in-
consistency of extended models in slowness. Currently, we
reformulate the DSO problem by replacing the 1D OLS sub-
problems with one 2D least-squares form with a differential
semblance type of constraint to penalize the inconsistency in
slowness. The new formulation makes this algorithm more
generalizable and will lead to better numerical performance.
Its implementation is ongoing.
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