Restructuring IWave

W. W. Symes Xin Wang

Trip Annual Meeting

Jan 29, 2010

IWave now

- provide a variable den AWE solver in up to 3D
- staggered grid FD scheme of order 2 in time and 2k in space
- support either reflecting or absorbing bnd cond
- output traces (seismograms) at specified sample rates and/or movie frames
- *mpi* parallelization via domain decomp and/or *openmp*

IWave in future for users

- provide other wave solvers, e.g., linear elastic wave equations
- implement various FDTD methods for research and practical uses

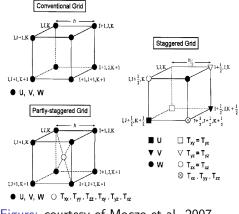
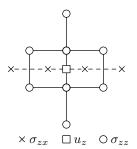


Figure: courtesy of Moczo et al. 2007

IWave in future for developers

make it easy to generate new wave solver

- leave memory allocation, process communication, I/O and so on to IWAVE
- let developers concentrate on
 - designing the efficient computing routines
 - trying their ideas very quickly


FD stencils

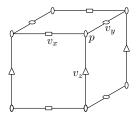
determine the preparation stage of a FD solver, but seems there are a lot of choices $% \left({{{\rm{D}}_{\rm{T}}}} \right)$

e.g.,

$$D \frac{\partial u_z}{\partial t} = \frac{\partial \sigma_{zz}}{\partial z} + \frac{\partial \sigma_{zx}}{\partial x}$$

staggered grid stencil

using 4th order stencil, updating u_z at (i,j) requires


•
$$\sigma_{zz}$$
: $(i-1,j), (i,j), (i+1,j), (i+2,j)$
• σ_{zx} : $(i,j-2), (i,j-1), (i,j), (i,j+1)$

1

Patterns of FDTD wave solvers

- wave equations have terms of up to 1st order spatial derivative
- FD discretization along each spatial axis has up to 2 different types of grids,
 - primal grid: integer grid, index-0 grid \Rightarrow 0
 - dual grid: half integer grid, index-0 grid $\Rightarrow 1/2$

e.g., pressure p on primal grids along 3 axes, v_x on dual grid along x-axis and primal grids along y-axis and z-axis

Define the FD stencils

- grid type table for each variable
- dependent relation involving field variables
- $\textbf{e.g.}, \, \text{2D}$ isotropic elastic wave staggered grid FDTD solver

	grid type		dependent relation						
	z-axis	x-axis	σ_{zz}	σ_{XX}	σ_{zx}	U _z	U _X		
σ_{zz}	Р	Р	-	-	-	$\partial/\partial z$	$\partial/\partial x$		
σ_{xx}	Р	Р	-	-	-	$\partial/\partial z$	$\partial/\partial x$		
σ_{zx}	D	D	-	-	-	$\partial/\partial x$	$\partial/\partial z$		
U _z	D	Р	$\partial/\partial z$	-	$\partial/\partial x$	-	-		
U _z	Р	D	-	$\partial/\partial x$	$\partial/\partial z$	_	-		

Automatic wave solver generation

according to the tables, IWave will automatically

- generate FD stencil
- then allocate necessary memory for field variables
- prepare I/O, parallelization required information
- finally, link user's computation routines

Create your WAVE

fill the table

grid	type	dependent relation						
z-axis	x-axis	σ_{zz}	σ_{xx}	σ_{zx}	U _z	u_{x}		
	_	grid type z-axis x-axis						

Submit

- \blacksquare click the Submit button \Rightarrow a parallel FDTD wave solver
- enjoy your own wave solver

Thank You

