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Background

Usual regular grid solution by FDTD inadequate for variable
density acoustics in simple cases (Symes and Vdovina, 2008)

Finite difference modifications to rescue regular grid

I Muir et al. (1992) based on Schoenberg-Muir

I Immersed interface method (Leveque and Li, 1994)

Unstructured mesh family such as finite element method (FEM)
and discontinuous Galerkin obvious solutions, but leave behind
regular grid efficiency favored for large problems

Owhadi and Zhang (2006) present scale-free method based on
change of variables using σ-harmonic map of Alessandrini and Nesi
(2001). The 1D case is an old story seen in homogenization
(Bensoussan et al., 1978) and inversion (Bamberger et al., 1979).
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Previously...

Applied harmonic coordinates to build finite element approximation
space in 1D.

Recovered optimal convergence for Dirichlet problem and scalar
acoustic wave equation

Showed the approximation space obtained by composition is
equivalent to immersed finite element method (IFEM) constructed
by Li (1998)

Found that FEM is “okay” for low contrast density

Mass lumped IFEM solution of the acoustic wave equation
convergences with optimal rate (constant density case, see Igor’s
talk)
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Review: Acoustic Wave Equation

Scalar acoustic wave equation with nonconstant density:

1

κ

∂2p

∂t2
−∇ ·

(
1

ρ
∇p

)
= f p ≡ 0, t � 0

with appropriate boundary & initial conditions.

Solution is continuous even when ρ, κ piecewise constant

Constant density case is has twice weakly differentiable solutions,
but jumps in density mean jumps in first derivative of p

Approximation with P1,Q1, . . . elements on regular grids is not
optimal for general interfaces.

Elements are required that preserve subgrid information to have
accurate approximation
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Harmonic Coordinates and Effective Media

Effective medium can be established by coordinate change and
chain rule:

Suppose F is an invertible coordinate transformation. Let
p(x) = p̃(F (x)), where p̃ = p̃(y), and y = F (x). Then

∂p

∂xi
=

∑
j

∂Fj

∂xi

∂p̃

∂yj
◦ F

Spatial term from acoustic wave equation becomes

∇ · 1

ρ
∇p =

∑
j

[
∇ · 1

ρ
∇Fj

]
∂p̃

∂yj
◦ F +

∑
j ,k

[
1

ρ
∇Fj · ∇Fk

]
∂2 p̃

∂yj∂yk
◦ F
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Harmonic Coordinates and Effective Media

Set

ajk =

[
∇Fj ·

1

ρ
∇Fk

]
◦ F−1

and κ̃ = κ ◦ F−1. Then p̃ solves

1

κ̃

∂p̃

∂t2
−

∑
j ,k

ajk
∂2 p̃

∂xj∂xk
= f ◦ F−1

provided F is ρ-harmonic:

∇ · 1

ρ
∇Fj = 0.
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Harmonic Coordinates

Special case of σ-harmonic map. Suppose F solves the Dirichlet
problems

∇ ·
(

1

ρ
∇Fj

)
= 0,

with

Fj = xj , on the domain boundary, j = 1, 2.

Then F is a coordinate transformation

This is guaranteed in 2D (see Alessandrini, 2001), but pathological
cases exist in 3D that prevent bijectiviy (see Owhadi and Zhang,
2006).
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Harmonic Coordinates and Effective Media

The acoustic wave equation

1

κ̃

∂p̃

∂t2
−

∑
j ,k

ajk
∂2 p̃

∂yj∂yk
= f ◦ F−1

is now in non-divergence form, which means there is a strong
solution, i.e., twice weakly differentiable. Recovered smoothness by
coordinate transform!

Recovered smoothness means recovered optimal convergence by
finite elements.

Coefficient matrix must satisfy certain conditions to guarantee
solvability (Maugeri et al., 2000, and references therein)

Natural to assume this transform can be used to construct finite
element approximation space.
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Harmonic Coordinates: 1D Example

Let domain Ω = [0, 1]. Suppose constants ρ1 6= ρ2 ∈ R+ and
α ∈ (0, 1). Define the density as

ρ(x) =

{
ρ1, x < α

ρ2, x ≥ α

Then seek the solution F to

d

dx

(
1

ρ

dF

dx

)
= 0,

with F (0) = 0 and F (1) = 1.

9/26



Harmonic Coordinates: 1D Example

The harmonic map in 1D for single interface is

F (x) =
1

M

{
ρ1x , x < α

ρ1α+ ρ2(x − α), x ≥ α

where M = ρ1α+ ρ2 (1− α).

Clearly,

I F (0) = 0 and F (1) = 1,

I F is continuous

I and bijective ⇒ invertible

Thus, F is coordinate transformation.
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Harmonic Coordinate FEM 1D

To build the basis functions:

I Uniformly discretize the domain: Ω → Ωh

I Map Ωh using F to make harmonic grid F (Ωh)

I Construct the usual nodal basis functions φj(y) in F (Ωh)

I Pull-back to Ωh by composition φj ◦ F (x)
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Harmonic Coordinate FEM 1D

0 1

0 xk−2 xk−1 xk xk+1 xk+2 1

α

α

Ω

Ωh

F (Ωh)
η

0 ym−2 ym−1 ym ym+1 ym+2 1

Uniformly Discretize

Harmonic Coordinates
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Finite Element Basis

Construct the standard piecewise linear basis ψm(y) on the
harmonic grid:

η0 ym−2 ym−1 ym ym+1 ym+2 1

ψm ψm+1

The interface in harmonic coordinates is η = F (α).
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Finite Element Basis

Composing the standard basis ψm(y) with the harmonic map F
gives “kinky” basis at the interface.

0 xm−2 xm−1 xm xm+1 xm+2 1α

ψm ◦ F ψm+1 ◦ F

Name the FEM using {ψm ◦ F} as the basis the harmonic
coordinate enhanced finite element method (HCE-FEM)
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HCE-FEM in 2D

Based on Q1 finite elements

There are four bilinear basis functions per element

Use the same procedure as 1D to build the composite functions

Major difference: Harmonic map is computed on a very fine grid
since no exact solution exists
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HCE-FEM in 2D

Procedure is the same as the 1D case:

I Domain uniformly discretized using quadrilateral mesh Ωh

I Map the discrete domain Ωh → F (Ωh)

I Construct basis functions on harmonic grid quadrilaterals

I Composition ψm ◦ F provides basis on Ωh

This is the algorithm proposed by Owhadi and Zhang.
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HCE-FEM in 2D

Map the coarse physical grid (left) under the harmonic map to
generate a coarse harmonic grid (right). Example has a circular
inclusion of radius r0 = π/12.56.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Physical Grid
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Harmonic Grid

Basis functions ψm are defined on harmonic grid elements.
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Example: Circular Inclusion 2D

Suppose domain is bi-unit square [−1, 1]× [−1, 1] with a circle
radius r0 = π/12.56 centered at the origin. Find u such that

∇ ·
(

1

ρ
∇u

)
= 9r

where r =
√

x2 + y2 and

ρ(x , y) =

{
ρ1, inside circle,

ρ2, outside.

This problem has a closed form solution.

The boundary condition is determined by the solution.
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Example: Circular Inclusion 2D
Convergence study with densities ρ1 = 10, ρ2 = 1.

Error estimate proportional hr where h is the grid size and r is the
estimated rate of convergence. The optimal rate for Q1 finite
elements is r = 2.

L∞ Relative Nodal Error (%)

h FEM HCE-FEM

1/4 3.6244e-001 2.9482e-001
1/8 7.8505e-001 1.1200e-001
1/16 5.7880e-001 3.1088e-002
1/32 3.4700e-001 1.0103e-002
1/64 1.7778e-001 4.9859e-003

r 0.72* 1.52

HCE-FEM: ‖u − uh‖∞ ≈ Ch1.52 Suboptimal!

* First datum igonored when compuing the rate.19/26



What went wrong?

Suboptimal nodal L∞ errors indicate nonconforming basis

Turns out basis functions are nonconforming because the support
in the physical grid is assumed quadrilateral

Two ways to adjust for this:

I Approximate the harmonic grid elements faithfully

I Approximate the physical support of the basis function
accurately

The harmonic grid is where the basis is constructed, so distorted
elements would make constructing Q1 functions impossible.
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Toward Accurate Integration

The true basis support in physical coarse grid is distorted because
the true harmonic grid elements are approximated by quadrilaterals

Accurate representation of the distorted physical grid elements is
needed for accurate integration

How can we accurately represent these integration domains?
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New Quadrature: Schematic Explanation

Propose a new quadrature scheme that takes advantage of fine
grid used to compute F

Use a “map and mark” procedure to determine basis support in
the physical grid:

I “Map” fine grid to harmonic coordinates

I “Mark” the fine harmonic grid elements within coarse
quadrilaterals in F (Ωh)

The marked indices are associated one-to-one with physical fine
grid elements.
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Examples of “Map and Mark”

K and distorted domain K̃Harmonic Grid
Element F (K )
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Examples of “Map and Mark”

Harmonic Grid
Element F (K )

FIXME: Label things!
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Summary

Identified problem with 2D HCE-FEM

Next step is implementation of the new “map and mark”
quadrature scheme

Investigate how accuracy is affected by the solution to the
harmonic map subproblem

Interface representation

Elasticity
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