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Background
Reflection-transmission at interface:

state-of-art is interface-adaptive unstructured mesh FEM - spectral
element (Tromp-Komatitch) or DG (Käser-Dumbser,
Hesthaven-Warburton - see Xin’s talk later this AM).

Several averaging schemes proposed to rescue regular grid
methods, based on effective medium theory (Muir et al. 1992) -
hence scale separation.

However, typical distributions of elastic parameters in the earth
show

I discontinuities, large and small, along interfaces of limited
smoothness and spread throughout volumes

I apparent continuum of scales

Major new development: Owhadi’s scale-free effective medium
theory (Owhadi-Zhang 2006, 2008).



Accuracy and Approximation

Review of constant density case (illustration - Igor’s talk):
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−∇2p = f ; p ≡ 0, t << 0

f is “low frequency” (well sampled in time - always the case)

⇒ pressure time derivatives have “finite energy”, 1/κ bounded ⇒
pressure Laplacian ∇2p has “finite energy” ⇒ pressure has two L2

derivatives

⇒ optimal approximation by Q1 elements, hence O(∆t)
convergence of pressure derivatives, O(∆t2) convergence of
pressure itself.



Accuracy and Approximation

General case, discontinuous ρ:
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∇p = f ; p ≡ 0, t << 0

Displacement, hence acceleration = ρ−1∇p continuous

⇒ p has discontinuous derivatives where ρ is discontinuous ⇒ no
optimal order approximation by Q1 elements ⇒ no optimal order
convergence (numerical evidence: Tommy’s talk)

Crux of problem: how to create elements with appropriate
approximation properties for p?



Smoothing via Change of Coordinates

Owhadi’s observation:

Suppose that F is an invertible stationary coordinate
transformation, p(x) = p̃(F (x)), that is, p = p̃ ◦ F . Then
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Smoothing via Change of Coordinates

Set

ajk =
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ρ
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]
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and κ̃ = κ ◦ F−1. Then p̃ solves
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provided that the change of coordinates F is ρ-harmonic:
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ρ
∇Fj = 0.

On boundary of domain, make F the identity: Fj = xj .



Smoothing via Change of Coordinates

What’s really involved:

I the ρ-harmonic map F must be a change of coordinates: that
is, continuous with a continuous inverse map

I the coefficient matrix ajk must be elliptic, that is,

aminI ≤ a ≤ amaxI

in the sense of symmetric matrices, for scalars
amax ≥ amin > 0 - actually more is necessary - “Cordes type
conditions”, see references.

Owhadi-Zhang 2006, 2008: generically OK in 2D, may fail for very
high contrast in 3D.



Smoothing via Change of Coordinates

F is coordinate change, ajk satisfies Cordes-type conditions

⇒ p̃ has two L2 derivatives

⇒ Q1 elements {φ̃j} optimally approximate p̃

⇒ distorted Q1 elements {φj = φ̃j ◦ F} optimally approximate p

⇒ error in distorted Q1 FE solution of wave equation = O(∆t2) -
can also lump mass matrix using distorted elements.

Details - Tommy (next talk).



Perspective

Practical numerical method requires localization - construction of
global ρ-harmonic coordinates too expensive.

Construction of distorted elements trivial in 1D for interface
problems - what about 2D/3D? Probably needs to be localized.
How accurately must F be computed?

Our observation: low (typical) density contrast ⇒ little difference
between ordinary, distorted Q1 FEM.

What about elasticity? Or even acoustics in 1st order (“mixed
FEM”) formulation?



Perspective

Critical issue: how do we represent coefficients κ, ρ, ...?

Main lesson: simple grid sampling not enough - must somehow
encode subgrid information (cf. also Tanya’s upscaling work)

Proposal: multiscale representation (wavelets, curvelets,
xxxxlets,...) via oracle - able to provide any average required with
any precision required.

Meaning for inversion: produces estimates of averages, hence
constraint on multiscale subgrid structure.

References: Houman Owhadi’s web page, also Owhadi, H. and
Zhang, L.: Homogenization of the acoustic wave equation with a
continuum of scales, to appear in Computer Methods in Applied
Mechanics and Engineering, 2008.


