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Let:
m(x): The model (velocity, density,. . . )
p(x, t): The pressure field

Then, if S is the Forward Map:
The Forward Problem:

S[m] = p|surface

The Inverse Problem:

S[m] ≈ Sobs

Given Sobs, get m(x)

Nonlinear and Large Scale !



Linearization

If we have an approximation m0 to the model, Linearization is
advantageous:

Write m = m0 + δm
m0: Given reference model
δm: First order perturbation about m0

Define Linearized Forward Map F[m0] (Born Modeling):

F[m0]δm = δp

Reduce to the Linear Subproblem

F[m0]δm ≈ Sobs − S[m0] := d



Normal Operator

Interpreted as a least squares problem, linear subproblem
yields the normal equations

F∗[m0]F[m0]δm = F∗[m0]d

F∗[m0]F[m0] is the Normal Operator

The problem is still Large Scale,order of Pflops/Pbytes ⇒
cannot use direct methods to invert F∗F.

Properties of the normal operator have been extensively
studied (Beylkin,1985; Rakesh,1988) for smooth m0

Nearly diagonal in the basis of localized monochromatic
pulses (plane waves)
Theoretical Setting: Pseudodifferential Operators
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The Eigenvalue Problem!

Can compute F∗[m0]d and F∗[m0]F[m0](. . . ) (migration, e.g.
RTM, Born Modeling+Migration)
Know how to diagonalize F∗[m0]F[m0]
Don’t know the eigenvalues
If we knew eigenvalues ⇒ Invert



Linear Algebra Analog

How to compute the eigenvalues?
Given Ax = b, with A S.P.D ⇒ A = VTΛV.
Given b and Ab, applying A is very expensive!
Given V, collection of eigenvectors.
Given an algorithm that applies VTΛV cheaply.

Λb = argmin
Λ

‖VTΛVb− Ab‖2

Now that we have Λb,

A−1 = VTΛ−1
b V ⇒ x = A−1b



Scaling Methods

Spatial delta function approximation of eigenvectors ⇒
Diagonal Approximation of Hessian (Claerbout and
Nichols, 1994; Rickett, 2003)
Near Diagonal Approximation of Hessian (Guitton, 2004)
Herrmann et al. (2007) use curvelets to approximate
eigenvectors



An Alternative

An alternative, relying on the asymptotic expansion lemma:

Lemma

F∗[m0]F[m0]χ(x)eiωψ(x) = qm(x, ω∇ψ(x))χ(x)eiωψ(x) + O(ωm−β)

ω is the frequency, β > 0, qm principal symbol of order m.
χ(x) compactly supported in a small ball

χ(x)eiωψ(x) localized monochromatic pulse: eigenvectors
qm ≈ encodes the eigenvalues: Λ

χ(x) is localized
qm is slowly varying



Approximation of ΨDO

The action of the ΨDO (Bao and Symes, 1996):

Qmu(x, z) ≈
∫ ∫

qm(x, z, ξ, η)û(ξ, η)ei(xξ+zη) dξ dη

qm is the principal symbol, homogeneous of degree m.
û = F [u].
Direct Algorithm O(N4 log(N)) complexity!
Writing ξ = ω cos(θ), η = ω sin(θ). Then,
qm(x, z, ξ, η) = ωmq̃m(x, z, θ)

q̃m ≈
l=K/2∑

l=−K/2

cl(x, z)eilθ =
l=K/2∑

l=−K/2

ω−lcl(x, z)(ξ + iη)l



Algorithm

Qmu ≈
l=K/2∑

l=−K/2

cl(x, z)F−1[ωm−l(ξ + iη)lû(ξ, η)]

1 Calculate û = F [u]
2 Calculate F−1[ωm−l(ξ + iη)lû(ξ, η)]
3 Calculate cl(x, z) ≈ F [q̃m]
4 Estimate Qmu

Use FFT ⇒ O(KN2[log(N) + log(K)]) complexity vs O(N4 log(N))
complexity for the direct algorithm. K independent of N.
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Inversion

Given the migrated image mmig = F∗d, and the remigrated
image mremig = F∗Fmmig

qm = argmin
q̃m≥0

‖Qm[q̃m]mmig − mremig‖2

Let
q† =

1
qm + ε

, ε > 0

be the pseudoinverse of qm and obtain an approximate inverse

δm ≈ Qm[q†]mmig

We obtain a Scaling Method.



The Master Plan

Implement Bao and Symes (1996) Algorithm:
Discretizations, FFT...

Use Finite Difference Born and Adjoint Modeling (RTM) to
compute: mmig, mremig, · · ·
Get a Masters !
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Applications

When m0 is a good approximation:
Fast solution of the Linear Inverse Problem
Variable density acoustics
Linear Elasticity

When m0 is not a good approximation:
View the linear problem as a Newton step
Preconditioning of iterative methods
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Summary

Normal Operator is
Pseudodifferential
Nearly diagonal in basis of localized monochromatic pulses

Efficient Algorithm to apply a ΨDO
Scaling Method

Fast and reliable solution if m0 is a good approximation
Preconditioning iterative methods if m0 is not a good
approximation



THANK YOU !


