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Let:
@ m(x): The model (velocity, density,. . .)
@ p(x,1): The pressure field

Then, if S is the Forward Map:
@ The Forward Problem:

Sim] = plsurface
@ The Inverse Problem:
S[m] ~ $°b
Given §°%, get m(x)

Nonlinear and Large Scale !
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Linearization

If we have an approximation mg to the model, Linearization is
advantageous:

@ Write m = mg + ém
myg: Given reference model
om: First order perturbation about m

@ Define Linearized Forward Map F[my] (Born Modeling):
Flmolém = op
@ Reduce to the Linear Subproblem
Flmo)ém ~ §°S — S[mo] := d
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Normal Operator

Interpreted as a least squares problem, linear subproblem
yields the normal equations

F* [mo]F[mo](Sm =F* [m()]d
F*[mo]F[mp] is the Normal Operator

The problem is still Large Scale,order of Pflops/Pbytes =
cannot use direct methods to invert F*F.
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Normal Operator

Interpreted as a least squares problem, linear subproblem
yields the normal equations

F* [mo]F[mo](Sm =F* [m()]d
F*[mo]F[mp] is the Normal Operator

The problem is still Large Scale,order of Pflops/Pbytes =
cannot use direct methods to invert F*F.

Properties of the normal operator have been extensively
studied (Beylkin,1985; Rakesh,1988) for smooth m

@ Nearly diagonal in the basis of localized monochromatic
pulses (plane waves)

@ Theoretical Setting: Pseudodifferential Operators
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The Eigenvalue Problem!

@ Can compute F*[mg]d and F*[mg|F[my](...) (migration, e.g.
RTM, Born Modeling+Migration)

@ Know how to diagonalize F*[m]F|my)]
@ Don’t know the eigenvalues
@ If we knew eigenvalues = Invert
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Linear Algebra Analog

How to compute the eigenvalues?
@ Given Ax = b, with A S.P.D = A = VTAV.
@ Given b and Ab, applying A is very expensive!
@ Given V, collection of eigenvectors.
@ Given an algorithm that applies V7 AV cheaply.

°
Ay, = argmin ||VT AVb — Ab|?
A

@ Now that we have A,

AT =VIA V= x=A""
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Scaling Methods

@ Spatial delta function approximation of eigenvectors =
Diagonal Approximation of Hessian (Claerbout and
Nichols, 1994; Rickett, 2003)

@ Near Diagonal Approximation of Hessian (Guitton, 2004)

@ Herrmann et al. (2007) use curvelets to approximate
eigenvectors
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An Alternative

An alternative, relying on the asymptotic expansion lemma:

F*[mo]Fmo]x ()™ = gy (x, w Ve (x)) x (x)e“*™) + O(w"P)

w is the frequency, 8 > 0, g,, principal symbol of order m.
x(x) compactly supported in a small ball

@ x(x)e?( localized monochromatic pulse: eigenvectors

@ ¢, ~ encodes the eigenvalues: A

o x(x) is localized
@ g, is slowly varying
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Approximation of ¥DO

@ The action of the Y'DO (Bao and Symes, 1996):

Ott(x,2) ~ //qu2£n (€. de dn

g is the principal symbol, homogeneous of degree m.
i = Flu.

@ Direct Algorithm O(N*1log(N)) complexity!
@ Writing £ = wcos(), n = wsin(#). Then,
Qm(xa z,¢&, 77) = wmém(x7 < 0)

°
1=K /2 1=K /2
Gm ~ Z ci(x,z)e = Z w™lei(x,2) (€ + in)’
I=—K/2 I=—K/2
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Algorithm

I=K/2

Ouu Y afx, ) F W (€ + in)a(E, )]

I=—K/2

@ Calculate i = Flu]

@ Calculate F~'[w™ (€ + in)'i(&,n)]
@ Calculate ¢;(x, z) ~ Flgm]

© Estimate Q,,u
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Algorithm

I=K/2
Onur Y ale, ) F W (e + im)a(€, )]
I=—K/2
@ Calculate i = Flu]
@ Calculate F~'[w™ (€ + in)'i(&,n)]
@ Calculate ¢;(x, z) ~ Flgm]
© Estimate Q,,u

Use FFT = O(KN?[log(N) + log(K)]) complexity vs O(N*log(N))
complexity for the direct algorithm. K independent of N.
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Inversion

Given the migrated image mpq = F*d, and the remigrated

gm = argmin|{|Q,, [ém]mmig - mremig”2
Gm=>0

Let
_i. 1

= qm + 57
be the pseudoinverse of g,, and obtain an approximate inverse

q e>0
om =~ Qm[qT]mmig

We obtain a Scaling Method.
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The Master Plan

@ Implement Bao and Symes (1996) Algorithm:
Discretizations, FFT...
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The Master Plan

@ Implement Bao and Symes (1996) Algorithm:
Discretizations, FFT...

@ Use Finite Difference Born and Adjoint Modeling (RTM) to
compute: Mmigs Mremigs * *
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The Master Plan

@ Implement Bao and Symes (1996) Algorithm:
Discretizations, FFT...

@ Use Finite Difference Born and Adjoint Modeling (RTM) to
compute: mmig, Mremig, - - -

@ Get a Masters !
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Applications

@ When my is a good approximation:
e Fast solution of the Linear Inverse Problem
e Variable density acoustics
o Linear Elasticity
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Applications

@ When my is a good approximation:
e Fast solution of the Linear Inverse Problem
e Variable density acoustics
o Linear Elasticity

@ When my is not a good approximation:

o View the linear problem as a Newton step
e Preconditioning of iterative methods
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@ Normal Operator is

e Pseudodifferential

e Nearly diagonal in basis of localized monochromatic pulses
e Efficient Algorithm to apply a ¥DO
@ Scaling Method

e Fast and reliable solution if m, is a good approximation
e Preconditioning iterative methods if my is not a good
approximation
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THANK YOU !
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