Approximate Inverse Scattering Using Pseudodifferential Scaling

Rami Nammour

Department of Computational and Applied Mathematics Rice University Advisor: Dr. William Symes

February 29, 2008 / TRIP-08

Rami Nammour

• Present:

Second Year PhD Candidate Advisor: Dr. W.W. Symes Computational and Applied Mathematics Department Rice University

Past:

Completed Masters Coursework in Physics American University of Beirut, Lebanon High School Physics Teacher (2 years)

Future:

Summer Internship TOTAL E&P USA Houston, TX

Let:

- m(x): The model (velocity, density,...)
- p(x, t): The pressure field

Then, if *S* is the Forward Map:

• The Forward Problem:

$$S[m] = p|_{surface}$$

• The Inverse Problem:

$$S[m] \approx S^{obs}$$

Given S^{obs} , get m(x)

Nonlinear and Large Scale !

If we have an approximation m_0 to the model, Linearization is advantageous:

- Write $m = m_0 + \delta m$ m_0 : Given reference model δm : First order perturbation about m_0
- Define Linearized Forward Map *F*[*m*₀] (Born Modeling):

$$F[m_0]\delta m = \delta p$$

• Reduce to the Linear Subproblem

$$F[m_0]\delta m \approx S^{obs} - S[m_0] := d$$

Interpreted as a least squares problem, linear subproblem yields the normal equations

 $F^*[m_0]F[m_0]\delta m = F^*[m_0]d$

 $F^*[m_0]F[m_0]$ is the Normal Operator

The problem is still *Large Scale*, order of Pflops/Pbytes \Rightarrow cannot use direct methods to invert F^*F .

Properties of the normal operator have been extensively studied (Beylkin, 1985; Rakesh, 1988) for *smooth m*₀

- Nearly diagonal in the basis of localized monochromatic pulses (plane waves)
- Theoretical Setting: Pseudodifferential Operators

Interpreted as a least squares problem, linear subproblem yields the normal equations

 $F^*[m_0]F[m_0]\delta m = F^*[m_0]d$

 $F^*[m_0]F[m_0]$ is the Normal Operator

The problem is still *Large Scale*, order of Pflops/Pbytes \Rightarrow cannot use direct methods to invert F^*F .

Properties of the normal operator have been extensively studied (Beylkin, 1985; Rakesh, 1988) for *smooth* m_0

- Nearly diagonal in the basis of localized monochromatic pulses (plane waves)
- Theoretical Setting: Pseudodifferential Operators

ヘロン 人間 とくほど くほとう

- Can compute $F^*[m_0]d$ and $F^*[m_0]F[m_0](...)$ (migration, e.g. RTM, Born Modeling+Migration)
- Know how to diagonalize $F^*[m_0]F[m_0]$
- Don't know the eigenvalues
- If we knew eigenvalues \Rightarrow Invert

Linear Algebra Analog

How to compute the eigenvalues?

- Given Ax = b, with A S.P.D $\Rightarrow A = V^T \Lambda V$.
- Given *b* and *Ab*, applying *A* is very expensive!
- Given V, collection of eigenvectors.
- Given an algorithm that applies $V^T \Lambda V$ cheaply.

$$\Lambda_b = \underset{\Lambda}{\operatorname{argmin}} \| V^T \Lambda V b - A b \|^2$$

• Now that we have Λ_b ,

۲

$$A^{-1} = V^T \Lambda_b^{-1} V \Rightarrow x = A^{-1} b$$

- Spatial delta function approximation of eigenvectors ⇒ Diagonal Approximation of Hessian (Claerbout and Nichols, 1994; Rickett, 2003)
- Near Diagonal Approximation of Hessian (Guitton, 2004)
- Herrmann et al. (2007) use *curvelets* to approximate eigenvectors

An alternative, relying on the asymptotic expansion lemma:

Lemma

$$F^*[m_0]F[m_0]\chi(x)e^{i\omega\psi(x)} = q_m(x,\omega\nabla\psi(x))\chi(x)e^{i\omega\psi(x)} + O(\omega^{m-\beta})$$

ω is the frequency, β > 0, q_m principal symbol of order *m*. $\chi(x)$ compactly supported in a small ball

- $\chi(x)e^{i\omega\psi(x)}$ localized monochromatic pulse: eigenvectors
- $q_m \approx$ encodes the eigenvalues: Λ
 - $\chi(x)$ is localized
 - q_m is slowly varying

Approximation of ΨDO

٥

• The action of the Ψ DO (Bao and Symes, 1996):

$$Q_m u(x,z) \approx \int \int q_m(x,z,\xi,\eta) \hat{u}(\xi,\eta) e^{i(x\xi+z\eta)} d\xi d\eta$$

 q_m is the principal symbol, homogeneous of degree m. $\hat{u} = \mathcal{F}[u].$

• Direct Algorithm $O(N^4 \log(N))$ complexity!

• Writing
$$\xi = \omega \cos(\theta), \eta = \omega \sin(\theta)$$
. Then,
 $q_m(x, z, \xi, \eta) = \omega^m \tilde{q}_m(x, z, \theta)$

$$\tilde{q}_m \approx \sum_{l=-K/2}^{l=K/2} c_l(x,z) e^{il\theta} = \sum_{l=-K/2}^{l=K/2} \omega^{-l} c_l(x,z) (\xi + i\eta)^l$$

NCE

ヘロト ヘ戸ト ヘヨト ヘヨト

Algorithm

$$Q_m u \approx \sum_{l=-K/2}^{l=K/2} c_l(x,z) \mathcal{F}^{-1}[\omega^{m-l}(\xi+i\eta)^l \hat{u}(\xi,\eta)]$$

1 Calculate
$$\hat{u} = \mathcal{F}[u]$$

- **2** Calculate $\mathcal{F}^{-1}[\omega^{m-l}(\xi+i\eta)^l\hat{u}(\xi,\eta)]$
- 3 Calculate $c_l(x, z) \approx \mathcal{F}[\tilde{q}_m]$
- Estimate $Q_m u$

Use FFT $\Rightarrow O(KN^2[\log(N) + \log(K)])$ complexity vs $O(N^4 \log(N))$ complexity for the direct algorithm. *K* independent of *N*.

Algorithm

$$Q_m u \approx \sum_{l=-K/2}^{l=K/2} c_l(x,z) \mathcal{F}^{-1}[\omega^{m-l}(\xi+i\eta)^l \hat{u}(\xi,\eta)]$$

1 Calculate
$$\hat{u} = \mathcal{F}[u]$$

- **2** Calculate $\mathcal{F}^{-1}[\omega^{m-l}(\xi+i\eta)^l\hat{u}(\xi,\eta)]$
- 3 Calculate $c_l(x, z) \approx \mathcal{F}[\tilde{q}_m]$
- Estimate Q_mu

Use $FFT \Rightarrow O(KN^2[\log(N) + \log(K)])$ complexity vs $O(N^4 \log(N))$ complexity for the direct algorithm. *K* independent of *N*.

Inversion

Given the migrated image $m_{mig} = F^*d$, and the remigrated image $m_{remig} = F^*Fm_{mig}$

$$q_m = \mathop{argmin}\limits_{ ilde{q}_m \geq 0} \| Q_m [ilde{q}_m] m_{ ext{mig}} - m_{ ext{remig}} \|^2$$

Let

$$q^{\dagger} = rac{1}{q_m + arepsilon}, \quad arepsilon > 0$$

be the pseudoinverse of q_m and obtain an approximate inverse

$$\delta m pprox Q_m[q^\dagger] m_{mig}$$

CE

イロト イポト イヨト イヨト

We obtain a Scaling Method.

 Implement Bao and Symes (1996) Algorithm: Discretizations, FFT...

- Implement Bao and Symes (1996) Algorithm: Discretizations, FFT...
- Use Finite Difference Born and Adjoint Modeling (RTM) to compute: *m_{mig}*, *m_{remig}*, ···

- Implement Bao and Symes (1996) Algorithm: Discretizations, FFT...
- Use Finite Difference Born and Adjoint Modeling (RTM) to compute: *m_{mig}*, *m_{remig}*, ···
- Get a Masters !

• When *m*⁰ is a good approximation:

- Fast solution of the Linear Inverse Problem
- Variable density acoustics
- Linear Elasticity
- When *m*⁰ is not a good approximation:
 - View the linear problem as a Newton step

< □ > < 同 > < 三 > <

Preconditioning of iterative methods

• When *m*⁰ is a good approximation:

- Fast solution of the Linear Inverse Problem
- Variable density acoustics
- Linear Elasticity
- When *m*⁰ is not a good approximation:
 - View the linear problem as a Newton step

Preconditioning of iterative methods

- Normal Operator is
 - Pseudodifferential
 - Nearly diagonal in basis of localized monochromatic pulses
- Efficient Algorithm to apply a Ψ DO
- Scaling Method
 - Fast and reliable solution if *m*⁰ is a good approximation
 - Preconditioning iterative methods if *m*₀ is not a good approximation

THANK YOU !

