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ABSTRACT

In the late 1960’s, J.-L. Lions and collaborators showed that energy estimates could be used to

establish existence, uniqueness, and continuous dependence on initial data for finite energy solutions

of initial/boundary value problems for various linear partial differential evolution equations with

nonsmooth coefficients. The second author has recently treated second order hyperbolic systems, for

example linear elastodynamics, by similar methods, and extended these techniques to demonstrate

continuous dependence and even differentiability (in a suitable sense) of the solution as function

of the the coefficients. In the present paper, we extend Lions’ results in a different direction, to

first order symmetric hyperbolic integrodifferential systems (such as linear viscoelasticity) with

bounded and measurable coefficients. We show that the initial value problem is well-posed in

an appropriate space of finite-energy weak solutions. Solutions constructed by our method are

continuous as functions of the coefficients and data. That this result is sharp: for example, solution

are not in general locally uniformly continuous in coefficients and data. Solutions are however

(Gâteaux-)differentiable as a function of the coefficients, in case the data is smooth enough that

the time derivative of the solution is itself a finite-energy weak solution. The continuity result

combines with the well-known domain of influence properties for hyperbolic systems with smooth

coefficients to show that viscoelasticity with bounded, measureable coefficients predicts finite wave

propagation speed.
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INTRODUCTION

Continuum mechanics models propagation of small amplitude waves in fluids and solids by hyper-

bolic systems of linear partial differential or integrodifferential equations (Whitham, 1974; Gurtin,

1981). The coefficients appearing in these systems represent local (in space) continuum-mechanical

characteristics of the material supporting the wave motion, such as the mass density or the elastic

(Hooke) tensor components. While these coefficients might, in some cases, reasonably be modeled

as smooth functions of position, in other cases they must be regarded as varying rapidly with po-

sition. For example, reasonably direct measurements (well logs) of density and elastic moduli in

sedimentary rocks show substantial spatial variance at all measurable scales (Walden and Hosken,

1986; Bourbie et al., 1987; White et al., 1990). A fundamental hypothesis of continuum mechanics

holds that bulk quantities depending on averages over finite volumes of material should be well-

defined for any “reasonable” volume (sample masses, elastic moduli of samples as measured in the

laboratory). Also, these bulk materical characteristics typically range over well-characterized inter-

vals. Therefore a reasonable abstraction capturing these basic continuum–mechanical assumptions,

while allowing for the observed spatial variability, might be that material properties (in the linear

response regime) should be modeled as bounded and (Lebesgue-)measureable functions of position.

Beginning in the 1960’s, J.-L. Lions and his collaborators provided a mathematical foundation

for the study of time-dependent partial differential equations with bounded and measureable co-

efficients (Lions, 1971; Lions and Magenes, 1972). Lions established that several large classes of

partial differential evolution equations have unique solutions depending continuously on their initial

data, by exhibiting these problems as instances of a class of abstract evolution equations for which

well-posedness could be demonstrated. These results imply, for example, that the linear acoustic

wave equation has global (in time) finite energy solutions for bounded, measurable, and uniformly

positive density and bulk modulus, under a variety of boundary conditions.

The second-named author of this paper recently extended Lion’s approach to hyperbolic systems

of second-order partial differential equations, including the linear elasticity system (Stolk, 2000).

This work also showed that the solutions are smoothly dependent on the coefficients, in appropriate

senses. These results provide a foundation for the study of inverse problems, in which the coefficients

are to be determined or estimated from attributes of the solutions. A data-fitting approach to

inverse problems via Newton’s method and its relatives requires that derivatives of these attributes
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with respect to the coefficients can be defined (and computed). Thus smoothness of the solution

as function of coefficients is a natural and fundamental question in the study of such problems.

In this paper, we extend the theory developed in (Lions, 1971; Lions and Magenes, 1972; Stolk,

2000) to a class of abstract first-order integro-differential systems. The coefficients of these systems

are operators on an abstract Hilbert space. The first-order formulation encompasses several natural

descriptions of wave propagation in continuum mechanics. The generalization to integro-differential

systems permits us to treat models of wave propagation in materials with memory, such as variants

of linear viscoelasticity. We show that systems of this class conform to a suitable generalization

of the functional-analytic framework developed in (Lions, 1971; Lions and Magenes, 1972; Stolk,

2000). We define a class of weak solutions, and establish an a priori energy inequality for these. It

follows from this a priori bound that causal weak solutions (vanishing for large negative time) are

uniquely determined by the problem data (operator coefficients, right-hand side) and continuous in

time. An abstract finite element method gives a direct construction of causal weak solutions. The

restriction to causal solutions (distributions vanishing on a negative half-axis) is natural, in view

of the integro-differential dynamics posited for our class of evolutions.

Examples from continuum mechanics (acoustics, elastodynamics) suggest appropriate Hilbert

spaces of mechanical states (spatial distributions of stresses, particle velocities, etc.) with the norm-

squared being essentially mechanical energy. We refer throughout the paper to an appropriate

weighted norm-squared as “energy”, for this reason.

This theory also suggests a natural sense in which causal weak solutions are continuous as

functions of the coefficient operators and data. We show that convergence of weak solutions of

the abstract evolution problem, locally uniformly in time, follows from strong (pointwise) conver-

gence of the coefficient operators. Moreover, weak solutions are differentiable as a functions of the

coefficients, provided that the data is differentiable in time (so that time derivative of solutions

are themselves finite-energy solutions of similar problems). The energy estimates already entail

continuity as function of data, so these results actually imply that weak solutions are continuous

as functions of coefficients and data jointly, and even differentiable provided that the data is suf-

ficiently regular. Additional regularity of the data is certainly required for differentiability: we

observe that, without it, weak solutions are not, in general, even locally uniformly continuous as

functions of coefficients and data.

In view of the memory effects modeled by our abstract system, causal solutions form the natural
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class uniquely determined by the problem data. If memory effects are absent, so that the problem

is differential, then initial (plus other problem) data uniquely determine solutions. We sketch the

modifications of the theory necessary to accommodate such initial value problems.

We conclude by showing explicitly how certain models of viscoelastic wave propagation fit into

this framework. The conditions imposed on coefficient operators translate into (minimal) regularity

requirements on the material parameters of the model. Mass density and viscoelastic moduli are

required to be bounded and measurable as functions on the spatial domain of the problem, and

elliptic in a suitable sense. We observe that strong convergence of the coefficient operators is

a consequence of convergence in measure of the material parameter functions. One immediate

consequence of this fact is the finite propagation speed of viscoelastic waves in materials models

with merely bounded and measurable density and moduli: this conclusion follows directly from

the continuity result, the approximation in measure of bounded measurable functions by smooth

functions, and the finite propagation speed of similar systems with smooth coefficients.

DEFINITION OF THE PROBLEM

Let H be a separable real Hilbert space, with inner product 〈·, ·〉 and norm ‖ · ‖. Denote by B(H)

the Banach space of continuous linear operators on H, with the operator (uniform) norm. We

suppose that

• A ∈ B(H) is self-adjoint and positive-definite;

• B ∈ B(H);

• Q ∈ L1(R,B(H)), and is causal, that is, Q(t) = 0 for t < 0;

• D is a skew-adjoint operator with dense domain V ⊂ H.

When convenient, we metrize V with the graph norm of D.

Define the bounded operator R : L2(R, H)→ L2(R, H) by

R[u](t) =
∫
Q(t− s)u(s) ds. (1)

Note that if suppu ⊂ [T,∞) for some T ∈ R, then suppR[u] ⊂ [T,∞) also. The formal (distribu-

tion) adjoint

R∗[u](t) =
∫
Q(s− t)u(s) ds
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satisfies a similar condition: if suppu ⊂ (−∞, T ] for some T ∈ R, then suppR∗[u] ⊂ (−∞, T ].

The components described above combine to yield the formal evolution problem: find u which

solves, in a suitable sense,

Au′ +Du+Bu+R[u] = f ∈ L2(R, H) (2)

Example. Linear acoustics provides an important example of the framework just described. Acous-

tic wave propagation does not include the memory effect modeled by the integral term (operator

R), but illustrates several other features of the class of problems studied in this paper.

We presume that the fluid supporting acoustic wave motion occupies a domain Ω ⊂ R3 with

rectifiable boundary. The balance and constitutive laws of linear acoustics relate the excess pressure

p(t,x) and velocity fluctuations v(t,x) = (v1(x, t), v2(x, t), v3(x, t))T , x ∈ R3, to mass density ρ(x),

bulk modulus κ(x), and body force density f(t,x) by

ρ
∂v
∂t

= −∇p+ f ,

1
κ

∂p

∂t
= −∇ · v. (3)

Define H = (L2(Ω))4. Then

Au = diag
(

1
κ
, ρ, ρ, ρ

)
u, u =



p

v1

v2

v3


∈ H

defines a bounded self-adjoint positive-definite operator A ∈ B(H), provided that log ρ, log κ ∈

L∞(Ω).

Define the differential operator

D = −



0 ∂
∂x1

∂
∂x2

∂
∂x3

∂
∂x1

0 0 0

∂
∂x2

0 0 0

∂
∂x3

0 0 0


.
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Then D defines a skew-adjoint operator on H with dense domain

V = H1
0 (Ω)×H1

div(Ω).

The Hilbert space H1
div(Ω) is the dense subspace of (L2(Ω))3 obtained by completing C1(Ω) in the

graph norm of the divergence operator.

With these choices for the spaces H and V and operators A, D, B = 0, Q ≡ 0, and f ∈ L2(R, H)

defined by

f(t) = f(t, ·),

the acoustics system (3) is formally equivalent to the evolution problem (2). If the material param-

eter distributions κ and/or ρ are not smooth (of class C1 at least), however, then the form of the

equations (3) immediately implies that no solutions of class C1 may exist, even if the right-hand

side f (that is, the body force density f) is smooth. Physically reasonable fluid configurations thus

exist for which solutions in the classical sense cannot be defined, for example piecewise homoge-

neous mixtures with jump discontinuities of density and/or bulk modulus across smooth interfaces.

A more flexible notion of “solution” than the classical (C1) type is required to treat such problems.

We follow (Lions, 1971; Lions and Magenes, 1972; Stolk, 2000) in defining weak solutions in

L2
loc(R, H) of the formal evolution problem (2) by integration against smooth test functions. Be-

cause the operator kernel Q may have unbounded support, we must constrain the growth of candi-

date members of L2
loc(R, H) on the negative half-axis. Accordingly, a weak solution of the formal

evolution problem (2) is a member of u ∈ L2
loc(R, H) satisfying

1. For every T ∈ R, u ∈ L2((−∞, T ], H);

2. ∫
〈u(t), (Aφ′ +Dφ−B∗φ−R∗[φ])(t)〉 dt = −

∫
〈f(t), φ(t)〉 dt; (4)

for all φ ∈ C∞0 (R, V ).

Note that since R∗[φ] is supported in the half-axis (−∞, sup suppφ], and is square-integrable,

assumption 1. implies that the last term on the left-hand side of (4) is well-defined.

A weak solution is causal if there exists T0 ∈ R so that u = 0 in (−∞, T0). Because of the

causal assumption on the convolution kernel Q, existence of a causal weak solution vanishing for

t < T0 implies that the right-hand side f is also causal, in fact vanishes for t < T0.
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Note that a causal weak solution u belongs to L2((−∞, T ], H) for any T ∈ R, whence R[u] ∈

L2
loc(R, H) is well-defined and R[u] ∈ L2((−∞, T ], H) for any T ∈ R.

We shall repeatedly use following property of weak solutions:

Theorem 1. Suppose that u ∈ L2
loc(R, H) is a weak solution of (2). Then for any η ∈ C∞0 (R),

η ∗ u ∈ C∞(R, V ). (5)

Remark: The content of this theorem is that smoothing in time also “smooths in space”, in the

sense that the values of the smoothed weak solution are confined to the subspace V .

Proof. Choose the test function φ in (4) to have the special form φ(s) = η(t − s)w, where t ∈ R,

w ∈ V , and η ∈ C∞0 (R). Then

〈η ∗ u(t), Dw〉 =
〈∫

η(t− s)u(s) ds,Dw
〉

=
∫
〈u(s), D(η(t− s)w)〉 ds

=
∫ [
〈ū(s),−Aη′(t− s)w +B∗η(t− s)w

+R∗[η(t− ·)w](s)〉
]
ds− 〈η ∗ f(t), w〉 (6)

where the last equality is simply a rearrangement of (4) with the special choice of test function

φ(s) = η(t − s)w mentioned above. The right-hand side of (6) is bounded by a w-independent

multiple of ‖w‖H , therefore so is the left. Therefore η ∗ ū takes values in the domain D(D∗) of the

adjoint D∗ for any η ∈ C∞0 (R). But D is skew-adjoint, so D(D∗) = D(D) = V .

THE ENERGY INEQUALITY

Define the energy E(t) of a weak solution u of (2) by

E(t) =
1
2
〈u(t), Au(t)〉 (7)

It follows from the definition of weak solution that E is well-defined almost everywhere, and locally

integrable. Because A is positive-definite,

C∗‖u(t)‖2 ≤ E(t) ≤ C∗‖u(t)‖2 (8)

hold for almost all t ∈ R, for suitable C∗ ≥ C∗ > 0.
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Remark. In the linear acoustics example presented in the previous section, E(t) is precisely the

mechanical energy of the acoustic field at time t.

In this and the following sections, we will use C to denote a generic nonnegative constant

depending on C∗, C
∗, ‖B‖B(H), and ‖Q‖L1(R,B(H)), and possibly on other quantities as noted.

Theorem 2. Let u ∈ L2
loc(R, H) be a weak solution of (2), E ∈ L1

loc(R) its energy as defined in

(7). Then

• after modification on a set of measure zero, E is continuous;

• if in addition u is causal, then for any T ∈ R there exists C ≥ 0 so that for t ∈ (−∞, T ],

E(t) ≤ C
∫ t

−∞
‖f‖2. (9)

Proof. Let ηn ∈ C∞c (R) be an approximate identity, that is, ηn(t) = nη(nt), where

η ∈ C∞0 (R), η ≥ 0,
∫
η(t) dt = 1, supp η ⊂ [−1, 1]. (10)

Define

En(t) =
1
2
〈ηn ∗ u(t), A(ηn ∗ u)(t)〉. (11)

Since ηn ∗ u→ u in L2
loc(R, H), En → E in L1

loc(R).

For each n, En is smooth; differentiating En, obtain for any s, t ∈ R

En(t)− En(s) =
∫ t

s

dEn
ds

(τ) dτ

=
∫ t

s
〈η′n ∗ u(τ), A(ηn ∗ u)(τ)〉 dτ

=
∫ t

s

〈∫
η′n(τ − σ)u(σ) dσ,A(ηn ∗ u)(τ)

〉
dτ

=
∫ t

s

∫ 〈
u(σ),−A d

dσ
[ηn(τ − σ)(ηn ∗ u)(τ)]

〉
dσdτ. (12)

The inner (σ) integral has the form of the first term in (4), with test function σ 7→ ηn(τ − σ)(ηn ∗

u)(τ). Thanks to Theorem 1, this function lies in C∞0 (R, V ), whence (4) implies that the right-hand
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side of (12) is

=
∫ t

s

∫
〈u(σ), (D −B∗)(ηn(τ − σ)(ηn ∗ u)(τ))

−R∗[ηn(τ − ·)(ηn ∗ u)(τ)](σ)〉 dσdτ

+
∫ t

s

∫
〈f(σ), ηn(τ − σ)(ηn ∗ u)(τ)〉 dσdτ

=
∫ t

s
[−〈((D +B)(ηn ∗ u)(τ) +R[ηn ∗ u])(τ), ηn ∗ u(τ)〉

+ 〈ηn ∗ f(τ), ηn ∗ u(τ)〉] dτ

=
∫ t

s
[−〈(B(ηn ∗ u)(τ) +R[ηn ∗ u])(τ), ηn ∗ u(τ)〉

+ 〈ηn ∗ f(τ), ηn ∗ u(τ)〉] dτ. (13)

The last equality in this sequence is a consequence of the skew-symmetry of D.

Since convolution with η commutes with the convolution operator R, and with the actions of

the other operators appearing in (2), the identity (13) implies that

|En(t)− En(s)| =
∣∣∣∣∫ t

s

dEn
dτ

(τ) dτ
∣∣∣∣

≤
∫ t

s

[
|〈ηn ∗ (Bu(·))(τ), ηn ∗ u(τ)〉|

+|〈(ηn ∗R[u])(τ), ηn ∗ u(τ)〉|

+|〈ηn ∗ f(τ), ηn ∗ u(τ)〉|
]
dτ

≤ (‖B‖+ 1)
(∫ t

s
‖(ηn ∗ u)(τ)‖2 dτ

)
+
∫ t

s
(‖(ηn ∗R[u])(τ)‖2 + ‖(ηn ∗ f)(τ)‖2) dτ (14)

Since u, R[u], and f are locally square-integrable, for each t ∈ R and ε > 0, there exist ∆t(t, ε) > 0

and an N(t, ε) ∈ N so that for |s− t| < ∆t(t, ε) and n > N(t, ε),∫ t+1/n

s−1/n
‖u‖2 < ε,

∫ t+1/n

s−1/n
‖R[u]‖2 < ε, and

∫ t+1/n

s−1/n
‖f‖2 < ε,

whence (14) implies that for n > N(t, ε), |s− t| < ∆t(t, ε),

|En(t)− En(s)| < Cε. (15)

Continuity of En implies existence of ∆t(t, ε) > 0 so that for |s− t| < ∆t(t, ε) and n ≤ N , |En(t)−

En(s)| < Cε. Thus the inequality (15) holds for all n ∈ N if s satisfies |s−t| < min(∆t(t, ε),∆t(t, ε)).

Since t ∈ R, ε > 0 are arbitrary, we have shown that the sequence {En} ⊂ C0(R) is equicontinuous.
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Choose T0 ≤ T ∈ R: it follows from inequality (14) and Young’s inequality that∫ T

T0

En ≤ C
∫ T+1

T0−1
‖u‖2 (16)

is bounded independently of n. For t ∈ [T0, T ],

(T − T0)En(t) =
∫ T

T0

(En(t)− En(s)) ds+
∫ T

T0

En(s) ds (17)

Apply Young’s inequality to the convolutions with ηn appearing in the inequality (14) to conclude

that for T0 ≤ s, t ≤ T ,

|En(t)− En(s)| ≤ C
∫ T+1

T0−1
(‖u‖2 + ‖R[u]‖2 + ‖f‖2). (18)

Taken together, (16), (17) and (18) imply that {En} is a bounded subset of C0([T0, T ]). According to

Ascoli’s theorem, {En} is precompact in C0([T0, T ]), hence has a subsequence converging uniformly

to a continuous limit. Since the subsequence is necessarily also L1-convergent, and T ∈ R is

arbitrary, the first assertion of the theorem is established.

In view of the continuity of E, we may take the limit n → ∞ on both sides of the inequality

(14) along the uniformly convergent subsequence whose existence we have just established. Since

ηn ∗ u→ u in L2([T0, T ], H), the right hand side converges, and we obtain

|E(t)− E(s)| ≤ C
∫ t

s
(‖u‖2 + ‖R[u]‖2 + ‖f‖2). (19)

We have assumed u to be causal, but this assumption has not appeared in the reasoning up to

now. It allows us to take s → −∞ in (19). In view of the equivalence of
√
E and the norm ‖ · ‖

(inequalities (8)), the inequality (19) implies that

E(t) ≤ C
∫ t

−∞
(E + ‖f‖2).

Gronwall’s inequality then yields the second conclusion.

Corollary 1. The energy E of a weak solution u of (2), as defined above, satisfies for any s, t ∈ R

E(t)− E(s) =
∫ t

s
〈−Bu(τ)−R[u](τ) + f(τ), u(τ)〉 dτ. (20)

Proof. Continuity of E and convergence of ηn ∗ u to u in L2
loc(R, H) allows us to take limits on

both sides of (13).

Corollary 2. Suppose that u1, u2 ∈ L2
loc(R, H) are causal weak solutions of (2). Then u1 = u2.
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Proof. The conclusion follows immediately from the energy inequality (9), applied to the difference

u = u1 − u2, which is a weak solution with f ≡ 0.

Corollary 3. . Suppose that u ∈ L2
loc(R, H) is a causal weak solution of (2). Then u ∈ C0(R, H).

Proof. For δt ∈ R, denote by uδt the member of L2
loc(R, H) defined by uδt(t) = u(t + δt). Then

uδt is a causal weak solution (the only one, thanks to Corollary 2) of (2) with f replaced by

fδt ∈ L2(R, H), defined by fδt(t) = f(t+ δt). The translation group acts strongly continuously on

L2, i.e. ‖fδt− f‖L2(R,H) → 0 as δt→ 0. Since the difference uδt− u is a causal solution of (2) with

right-hand side fδt − f , it follows immediately from (9) that ‖uδt(t) − u(t)‖H → 0 as δt → 0 for

any t ∈ R, that is, u ∈ C0(R).

Corollary 4. Suppose that

1. K ⊂ B(H) is a bounded set;

2. L ⊂ B(V,H) is a bounded set of skew-adjoint operators on H with (common) domain V ,

whose graph norms are all equivalent (to each other and to the norm in V );

3. M ⊂ B(H) is a bounded set of self-adjoint, uniformly positive definite operators: there exist

constants 0 < C∗ ≤ C∗ so that for all A ∈M,

C∗I ≤ A ≤ C∗I;

4. Q ⊂ L1(R,B(H))
⋂
C0(R+,B(H)) is a bounded set of causal operator-valued functions: if

Q ∈ Q, then Q(t) = 0 for t < 0.

Let the set P ⊂ M × L × K × Q parametrize a family of formal evolution problems of for (2),

with coefficients A ∈ M, D ∈ L, B ∈ K, and Q ∈ Q, with common right-hand side f ∈ L2(R, H),

and let U ⊂ L2
loc(R, H) be a corresponding family of causal weak solutions. Then U ⊂ C0(R, H) is

equicontinuous.

Proof. That U ⊂ C0(R, H) is the content of the last Corollary. It follows from the proof of the basic

energy estimate (9) that the constant C appearing in its right-hand side may be chosen uniform

over P - indeed, the bounds defining the sets listed in conditions 1-4 above are precisely those on

which our constants, canonically notated C, depend. Therefore (9) implies that for u ∈ U ,

‖u(t+ δt)− u(t)‖2 ≤ 1
C∗
Euδt−u(t) ≤ C

∫ t

−∞
‖fδt − f‖2 = C

∫ t+δt

t
‖f‖2
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from which a uniform modulus of continuity follows.

EXISTENCE OF WEAK SOLUTIONS

The proof of existence follows the pattern laid out by Lions (1971), which in turn echos Cauchy’s

proof of the fundamental theorem of ordinary differential equations. We define a Galerkin method,

show that it converges, and finally that the limit is a weak solution. Note that no rate of convergence

follows from this argument; in fact it is easy to see that none can be expected.

Theorem 3. Assume that f ∈ L2(R, H) is causal: supp f ⊂ [T0,∞) for some T0 ∈ R, and that

the causal convolution kernel Q ∈ L1(R,B(H)) is continuous in R+: Q ∈ C0(R+,B(H)). Then a

unique causal weak solution u of (2) exists, and suppu ⊂ [T0,∞).

Proof. In view of the energy estimate, which establishes L2(R, H)-continuous dependence of weak

solutions on the right hand side f , it suffices to establish existence of solutions for a L2(R, H)-dense

set of right hand sides. Therefore assume without loss of generality that in addition f ∈ C0(R, H).

Since H is separable and V ⊂ H is dense, countable linearly independent subsets {wk}∞k=1 ⊂ V

exist for which finite linear combinations are dense in H. Without loss of generality, assume that

{wk}∞k=1 is (H-) orthonormal: 〈wk, wl〉 = δkl, k, l ∈ N.

Define m×m matrices Am (symmetric positive definite), Dm and Bm by

Amkl = 〈Awk, wl〉, (21)

Dm
kl = 〈Dwk, wl〉, (22)

Bm
kl = 〈Bwk, wl〉, (23)

for 1 ≤ k, l ≤ m, and the operator Rm on L2
loc(R)m defined analogously to (1) by

RmUm(t) =
∫ t

−∞
〈Qm(t− s)Um(s) ds, Qmkl(t)〉 ds = 〈Q(t)wk, wl〉, 1 ≤ k, l ≤ m.

Note that Qm ∈ L1(R,B(Rm))
⋂
C0(R+,B(Rm)) is causal (Qm(t) = 0, t < 0).

Define Fm ∈ C0(R)m by

Fmk (t) = 〈f(t), wk〉, 1 ≤ k ≤ m.
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A minor modification of a standard contraction mapping argument (see for example Coddington

and Levinson (1955)) shows that for each m ∈ N, the initial value problem

Am
dUm

dt
+DmUm +BmUm +RmUm = Fm,

Um(t) = 0, t < T0. (24)

has a unique solution Um ∈ C1(R,Rm).

For each m ∈ N, define um ∈ C1(R, V ), fm ∈ C0(R, H) by

um(t) =
m∑
k=1

Umk (t)wk, fm(t) =
m∑
k=1

Fmk (t)wk.

Then the system (24) satisfied by Um, together with the H-orthonormality of {wk}, implies that

um is the weak solution of the evolution equation (2) with right-hand side fm. The energy estimate

(9) shows that the sequence um is bounded in L2
loc(R, H), hence by the Tychonoff-Alaoglu theorem

and a diagonal process argument weakly precompact in L2
loc(R, H). Denote by um(l) a weakly

convergent subsequence, and by u its weak limit. Since um(t) = 0 for t < T0 and all m ∈ N, the

same is true for u.

To see that the limit u is a weak solution of (2), introduce for each m0 ∈ N test functions ψ of

the form

ψ =
m0∑
k=1

φk ⊗ wk, φk ∈ C∞0 (R). (25)

For l sufficiently large that m(l) > m0, 〈fm(t), ψ(t)〉 = 〈f(t), ψ(t)〉, 〈Dum(l), ψ〉 = −〈um(l), Dψ〉,

etc. So ∫
〈um(l), Aψ

′ +Dψ −B∗ψ −R∗[ψ]〉 dt = −
∫
〈f, ψ〉 dt.

Letting l → ∞, it follows that u satisfies (4) for all test functions ψ of the form given in equation

(25). Since linear combinations of wm’s are dense in H, the set of functions of the form (25) is

dense in C1
0 (R, V ), whence u is a weak solution of (2).

Additional regularity of the right-hand side f translates into additional regularity of the solution.

Corollary 5. Suppose that f ∈ Hk(R, H), k ≥ 0, is causal. Then the unique causal weak solution

u of (2) satisfies u ∈ Hk
loc(R, H).
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Proof. By induction on k: the case k = 0 is Theorem 3. Denote by v the weak solution of the

problem (2) with right-hand side f ′. By induction, v ∈ Hk−1
loc (R, H). From Theorem 3, v is causal,

so

u(t) =
∫ t

−∞
v

is well-defined. It is straightforward to see that u is a weak solution of (2) with right-hand side f ,

and that u ∈ Hk
loc(R, H) as claimed.

CONTINUOUS DEPENDENCE ON PARAMETERS

As we will now study a suite of problems of the form (2), it is convenient to choose a fixed Hilbert

space structure for the dense subspace V ⊂ H. The skew-adjoint operators D figuring in the

abstract evolution problem (2) are assumed to be bounded V → H. That is, the norm in V is

equivalent to the graph norm of D.

Theorem 4. Suppose that

1. K ⊂ B(H) is a bounded set;

2. L ⊂ B(V,H) is a bounded set of skew-adjoint operators on H with (common) domain V ,

whose graph norms are all equivalent (to each other and to the norm in V );

3. M ⊂ B(H) is a bounded set of self-adjoint, uniformly positive definite operators: there exist

constants 0 < C∗ ≤ C∗ so that for all A ∈M,

C∗I ≤ A ≤ C∗I;

4. Q ⊂ L1(R,B(H))
⋂
C0(R+,B(H)) is a bounded set of causal operator-valued functions: if

Q ∈ Q, then Q(t) = 0 for t < 0.

Assume that the sequence of problems of the form (2) with coefficients Am, Dm, Bm, Qm approxi-

mates the problem with coefficients A,D,B,Q in the sense that

1. {Am : m ∈ N} ⊂ M, A ∈M, limm→∞ ‖(Am −A)w‖ → 0 for all w ∈ H;

2. {Dm : m ∈ N} ⊂ L, D ∈ L, limm→∞ ‖(Dm −D)v‖ → 0 for all v ∈ V ;
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3. {Bm : m ∈ N} ⊂ K, B ∈ K, limm→∞ ‖(Bm −B)w‖ → 0, for all w ∈ H;

4. {Qm : m ∈ N} ⊂ Q, Q ∈ Q, and the convolution operators Rm, R with kernels Qm, Q satisfy

limm→∞ ‖Rm[w]−R[w]‖L2(R,H) → 0 for all w ∈ L2(R, H).

Let um, respectively u, be causal weak solutions of the differential equation (2) with coefficients

(Am, Dm, Bm, Qm), respectively (A,D,B,Q). and (uniform) right-hand side f ∈ L2(R, H). Then

um → u strongly in L2
loc(R, H), that is, ‖um − u‖L2((−∞,T ],H) → 0 for all T ∈ R.

This theorem will be proven by showing that the assumptions imply first that um converges to u

weakly in L2
loc(R, H). This convergence result then implies that um converges to u weakly, pointwise

in t. These two results, along with the original assumption on convergence of the operators, finally

gives strong L2 convergence.

Lemma 1. Under the conditions of Theroem 4, um converges weakly to u in L2
loc(R, H).

Remark. In order that Rm converge to R pointwise, as assumed in the statement of the preceding

theorem, it is sufficient that Qm → Q uniformly in R+.

Proof. The bounds implied by the energy estimate (Theorem 2) are uniform over bounded sets of

coefficients as described in the statement of the theorem. Therefore {um} is bounded in L2
loc(R, H),

hence has a L2
loc(R, H)-weakly convergent subsequence um(l), with limit ū ∈ L2

loc(R, H). Note that

L2
loc(R, H)-weak convergence implies convergence in the sense of H-valued distributions on R.

Choose a test function φ ∈ C∞0 (R, V ): then

−
∫
〈f(s), φ(s)〉 ds =

∫
〈um(l)(s), (Am(l)φ

′ +Dm(l)φ−B∗m(l)φ−R
∗
m(l)[φ])(s)〉 ds (26)

=
∫
〈ū(s), (Aφ′ +Dφ−B∗φ−R∗[φ])(s)〉 ds (27)

+
∫
〈(um(l)(s)− ū(s)), (Aφ′ +Dφ−B∗φ−R∗[φ])(s)〉 ds (28)

+
∫ 〈

um(l)(s), ((Am(l) −A)φ′ + (Dm(l) −D)φ (29)

−(Bm(l) −B)∗φ− (Rm(l) −R)∗[φ])(s)
〉
ds (30)

The second term vanishes in the limit l → ∞ because of the weak convergence of um(l) to ū. The

coefficients Am, ... range over bounded sets of operators, so we may replace φ and φ′ in the third

term with simple V -valued functions, taking finitely many values, at the price of an arbitrarily
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small perturbation in this term, uniformly in l. However the strong convergence of the coefficient

operators assumed in the statement of the theorem then implies that the resulting integrals become

arbitrarily small as l → ∞. Thus ū is a weak solution of the problem (2), and must therefore be

the same as the (unique) weak solution u constructed in the preceding section. Thus no other

weak accumulation point of the bounded sequence {um} may exist, hence um ⇀ u in L2
loc(R, H)

as claimed.

Corollary 6. Under the conditions of Theorem 4, um converges to u weakly, pointwise in t: that

is, um(t) ⇀ u(t) for all t ∈ R.

Proof. According to Corollary 4, the conditions described in the statement of Theorem 4 imply

that {um : m ∈ N} is equicontinuous. Given t ∈ R and ε > 0, choose ∆t > 0 so that if |δt| < ∆t,

‖um(t+ δt)− um(t)‖ < ε, m ∈ N; ‖u(t+ δt)− u(t)‖ < ε.

Then ∥∥∥∥um(t)− 1
2∆t

∫ t+∆t

t−∆t
um

∥∥∥∥ < ε, m ∈ N;
∥∥∥∥u(t)− 1

2∆t

∫ t+∆t

t−∆t
u

∥∥∥∥ < ε.

However, according to Lemma 1, for any w ∈ H,

1
2∆t

∫ t+∆t

t−∆t
〈um − u,w〉 =

∫ 〈
um − u,w

1
2∆t

1[t−∆t,t+∆t]

〉
→ 0, m→∞.

Therefore, assuming without loss of generality that ‖w‖ = 1,

|〈um(t)− u(t), w〉| ≤ 3ε

for m sufficiently large. Since ε > 0 is arbitrary, the proof is complete.

Proof of Theorem 4. A brief calculation gives

〈um, Amum〉 − 〈u,Au〉 = 〈um − u,Am(um − u)〉

+〈2um − u, (Am −A)u〉+ 2〈um − u,Au〉. (31)

The right-hand side f in the formal evolution equation (2) for both um and u vanishes for sufficiently

large negative t, else u could not be causal, but then um and u must vanish on a common (negative)
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half-axis, thanks to Corollary 2. The energy identity (20) implies that

〈um, Amum〉 − 〈u,Au〉(t)

= −
∫ t

−∞
〈Bmum, um〉 − 〈Bu, u〉+ 〈Rm[um], um〉 − 〈R[u], u〉 − 〈f, um − u〉

= −
∫ t

−∞
〈um − u,Bm(um − u)〉+ 〈2um − u, (Bm −B)u〉+ 2〈um − u,Bu〉

−
∫ t

−∞
〈um − u,Rm[um − u]〉+ 〈2um − u,Rm[u]−R[u]〉+ 2〈um − u,R[u]〉

+
∫ t

−∞
〈f, um − u〉. (32)

Identities (31) and (32) combine to yield

〈um − u,Am(um − u)〉(t) = −
∫ t

−∞
〈Bm(um − u) +Rm[um − u], um − u〉+ gm, (33)

in which gm ∈ C0(R) is defined by

gm(t) = −〈2um − u, (Am −A)u〉 − 2〈um − u,Au〉

−
∫ t

−∞
〈2um − u, (Bm −B)u〉+ 2〈um − u,Bu〉

−
∫ t

−∞
〈2um − u,Rm[u]−R[u]〉+ 2〈um − u,R[u]〉+

∫ t

−∞
〈f, um − u〉. (34)

Since the Bm’s are uniformly bounded operators on H and the Rm’s are uniformly bounded oper-

ators on L2((−∞, t], H) for every t ∈ R (with norm independent of t), (33) implies that

〈um − u,Am(um − u)〉(t)

≤ C

∫ t

−∞
(‖um − u‖(τ) + ‖um − u‖L2((−∞,τ ],H)(τ)) dτ + |gm(t)|. (35)

Select T0 for which u(t) = um(t) = 0 for all t < T0,m ∈ N. Then the uniform positivity of the

Am’s ((8), also Lemma 1, assumption 3) combines with (35) to yield

〈um − u,Am(um − u)〉(t) ≤ C(1 + (t− T0))
∫ t

T0

〈um − u,Am(um − u)〉(τ) dτ + |gm(t)|. (36)

Choose T ∈ R. Application of Gronwall’s inequality to (36) yields, for T0 ≤ t ≤ T and C depending

on T along with everything else,

〈um − u,Am(um − u)〉 ≤ eC(1+(T−T0))

∫ T

T0

|gm|. (37)

As mentioned in the proof of Lemma 1, {um(t) : m ∈ N} is bounded for each t, whence {um :

m ∈ N} is bounded in L2([T0, T ], H). This observation implies immediately that {gm(t) : t ∈
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[T0, T ],m ∈ N} is a bounded subset of R.The assumptions on the convergence Am → A, Bm → B

and Rm → R, imply that the terms of gm(t) involving (Am−A), (Bm−B) and Rm[u]−R[u] vanish

pointwise in the limit m → ∞. The other terms tend to zero pointwise by the weak convergence

of um − u, pointwise in t and in L2((−∞, T ], H). Thus {gm} is uniformly bounded on [T0, T ], and

convergent pointwise to zero. The Dominated Convergence Theorem shows that the integral on

the right hand side of (37) vanishes in the limit m → ∞, therefore so does the left-hand side.

Integrating (37) from T0 to T we see that also
∫ T
T0
〈um − u,Am(um − u)〉 → 0. In view of (8), valid

uniformly in m, the proof is complete.

Remark. This result is sharp, in the sense that nothing stronger than continuity can be expected

without additional constraints on the various components of the formal evolution problem (2). In

particular, the modulus of continuity cannot be uniform in the right-hand side (f ∈ L2(R, H)),

even locally.

For example, the 1D linear advection problem(
1
c

∂u

∂t
− ∂u

∂x

)
(t, x) = f(t, x)

conforms to the setting described above, with H = L2(R). The operator coefficients are: A =

multiplication by the positive constant 1/c, D = ∂/∂x, skew-adjoint with domain V = H1(R), and

B ≡ 0, Q ≡ 0. For any f ∈ L2(R2) (≡ L2(R, H) by Fubini’s Theorem), the causal weak solution is

u[c, f ](t, x) = c

∫ t

−∞
f(τ, x+ c(t− τ))dτ, (38)

in which we have explicitly indicated the dependence of the weak solution on the coefficient 1/c

and the right-hand side f .

Suppose χ ∈ C∞0 (R), suppχ ⊂ [−1, 1], and∫
χ = 1.

For ε > 0, set fε(t, x) = cos((x+ t)/ε)χ(x+ t)χ(x). Then u[1, fε](t, x) = cos((x+ t)/ε)χ(x+ t) for

t > 1, whereas a straightforward application of the method of stationary phase shows that

u[c, fε](t, x) = O

(√
ε

|c− 1|

)
for c 6= 1. Thus the modulus of continuity of c 7→ u[c, fε](t, ·) ∈ H (for t > 1) cannot be uniform

over the bounded set {fε : ε > 0} ⊂ L2(R, H), as c ranges over any interval containing 1.
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On the other hand, additional regularity of the right-hand side entails more regular behaviour

of the solution, as one might expect.

Corollary 7. In addition to the hypotheses of Theorem 4, assume that f ∈ Hk(R, H), k ≥ 0.

Then ‖um − u‖Hk((−∞,T ],H) → 0 as m→∞ for any T ∈ R.

Proof. Follows directly from Theorem 4 and its proof, and from Corollary 5.

Remark. For systems such as linear acoustics and linear viscoelastodynamics, described elsewhere

in this paper, in which the coefficient operators act by multiplication with matrix-valued functions,

sufficient conditions for operator approximation may be stated in terms of the coefficient func-

tions. L∞-bounded L1 convergence of coefficients induces strong convergence of the corresponding

operators. For example, smoothing the density and bulk modulus of the acoustic system induces

approximation of the pressure and velocity fields. In the final section we will explicitly state a

continuity theorem for the dependence of viscoelastic stress and velocity fields on the density and

viscoelastic moduli, for example.

Considerably weaker approximation of the coefficients may also lead to convergence in energy, if

the weaker sense of coefficient approximation is compensated by additional regularity of the right-

hand side. The first such results, so far as we know, were established by Bamberger et al. (1977,

1979) for the 1D 2nd order scalar wave equation. This “dynamic homogenization” approach has

been extended very recently to the 2D and 3D scalar wave equation, under some restrictions; see

Ohwadi and Zhang (2006).

The examples presented elsewhere in this paper define families of evolution problems sharing a

common skew-adjoint operator D. The next theorem shows that for such problems, the solution is

actually differentiable as a function of the remaining coefficients, provided that the right-hand side

possesses a minimal amount of additional regularity.

Theorem 5. Suppose that the operators A,D,B, and {Q(t) : t ∈ R} satisfy the conditions of

Theorem 4, and f ∈ H1(R, H) is causal. Denote by u ∈ H1
loc(R, H) the causal weak solution of

(2) with these choices of coefficients and right-hand side, per Theorem 3 and Corollary 5. Assume

that δA, δB ∈ B(H), δA is self-adjoint, and δQ ∈ L1(R,B(H))
⋂
C0(R+,B(H)). Define for h ∈ R

Ah = A+ hδA, Bh = B + hδB, Qh = Q+ hδQ.
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For sufficiently small h, Ah is self-adjoint and positive definite, so that the problem (2) with coeffi-

cients Ah, D,Bh, Qh and right-hand side f has a unique weak solution uh ∈ H1
loc(R, H) (Corollary

5). Denote by δu ∈ L2
loc(R, H) the weak solution of the formal evolution problem

Aδu′ +Dδu+Bδu+R[δu] = −δAu′ − δBu− δR[u], (39)

in which R (δR) is the convolution operator with kernel Q (δQ), as usual. Then∥∥∥∥uh − uh
− δu

∥∥∥∥
L2((−∞,T ],H)

= oh(1). (40)

for any T ∈ R.

Proof. The meaning of (39) is that for any φ ∈ C∞0 (R, V ),∫
〈δu,Aφ′ +Dφ−B∗φ−R∗[φ]〉 =

∫
〈δAu′ + δBu+ δR[u], φ〉

= −
∫
〈u, δAφ′ − δB∗φ− δR∗[φ]〉. (41)

On the other hand, both u and uh, h > 0, satisfy (4) with the same right-hand side, so

0 =
1
h

(∫
〈uh, Ahφ′ +Dφ−B∗hφ−R∗h[φ]〉

−
∫
〈u,Aφ′ +Dφ−B∗φ−R∗[φ]〉

)
=

∫
〈uh, δAφ′ − δB∗φ− δR∗[φ]〉

+
∫ 〈

uh − u
h

,Aφ′ +Dφ−B∗φ−R∗[φ]
〉
. (42)

Subtracting (41) from (42) and rearranging, obtain∫ 〈(
uh − u
h

− δu
)
, Aφ′ +Dφ−B∗φ−R∗[φ]

〉
=
∫
〈uh − u, δAφ′ − δB∗φ− δR∗[φ]〉

= −
∫
〈δA(uh − u)′ + δB(uh − u) + δR[uh − u], φ〉. (43)

In view of equation (43), the Newton quotient remainder

uh − u
h

− δu

is the weak solution of (2) with right-hand side

δA(uh − u)′ + δB(uh − u) + δR[uh − u] ∈ L2
loc(R, H).
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In view of Corollary 7,

‖δA(uh − u)′ + δB(uh − u) + δR[uh − u]‖L2((−∞,T ],H) → 0

as h→ 0 for any T ∈ R. Now a simple cutoff argument and Theorem 2 yield (40).

Remark. This result is also sharp, in the sense that the right-hand side must have at least one

square-integrable derivative in t, if only additional regularity in t is to be imposed. For example,

the solution (38) of the linear advection equation presented above may be rewritten as

u(t, x) =
∫ ∞
x

f

(
t+

x− y
c

, y

)
dy,

from which it is straightforward to see that no less regularity in t will do. On the other hand, the

expression (38) suggests that additional regularity in x might also support differentiable dependence

on c. However this conclusion rests on a special feature of the example problem, namely that it

admits a propagation of singularity principle (and indeed solution via the method of characteristics,

an even more special property). Propagation of singularities along bicharacteristics holds for sym-

metric or strictly hyperbolic systems with smooth coefficients (see for example Taylor (1981)), and

to some limited extent for systems with less regular coefficients (Beals and Reed, 1982, 1984; Symes,

1986; Lewis and Symes, 1991; Bao and Symes, 1996). Stronger regularity results for dependence

on coefficients follow for some of these systems. The matter seems worthy of further study.

THE DIFFERENTIAL CASE

If the memory term (convolution operator R) is absent, then initial data determine solutions

uniquely. In this section, we sketch the theory, parallel to that for causal solutions, which holds in

this differential case. We assume throughout this section that Q ≡ 0.

Corollary 8. Suppose that u ∈ L2
loc(R, H) is a weak solution of (2). Then u ∈ C0(R, H).

Proof. Choose φ ∈ C∞(R) so that φ(t) = 1 for t > 1 (say), and φ(t) = 0 for t < −1. Set u+ = φu,

u− = (1−φ)u. It is straightforward to verify that u+ is a causal solution of (2) with f replaced by

f + φ′u ∈ L2(R, H), whence u+ ∈ C0(R, H) according to Corollary3. Likewise t 7→ u−(−t) is also

a causal solution of (2) with D, B replaced by −D, −B, and f replaced by t 7→ −f(−t) + φ′u(−t),

which also belongs to L2(R, H). Thus u− is also continuous, but u = u+ + u−.
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Corollary 9. Suppose that u is a weak solution of (2). Then for any s ≤ t ∈ R,

E(t) ≤ E(s) + C

∫ t

s
‖f‖2.

Proof. The energy identity (20) applies to weak solutions, causal or not. Take into account R = 0,

and use Gronwall’s inequality, the boundedness of B, and the equivalence (8) of the energy with

the norm in H.

Corollary 10. If u1 and u2 are weak solutions of (2) (with the same right-hand side f ∈ L2(R, H)),

and u1(s) = u2(s) for some s ∈ R, then u1 ≡ u2.

Proof. Set u = u1 − u2: u is a weak solution with right-hand side f = 0, and u(s) = 0. The result

follows immediately from Corollary 9.

Theorem 6. Suppose that T0 ∈ R and u0 ∈ H. Then there exists a unique weak solution of (2)

for which u(T0) = u0.

Proof. A proof of this result is precisely analogous to the proof of Theorem 3: the solution is

approximated by a Galerkin procedure and the solution of systems of ordinary differential equations,

and the energy in the error estimated (in this instance, via Corollary 9).

Results precisely analogous to those established in the last section hold concerning regular

dependence on the coefficient operators for weak solutions with specified initial data and right-

hand side. We leave the reader to formulate these results, whose proofs are minor variants of those

given above.

AN EXAMPLE: VISCOELASTICICTY

The dynamic equations of linear viscoelasticity may be written as

ρ
∂v
∂t

= ∇ · σ + f ,

Γ ∗ ∂σ
∂t

=
1
2

(∇v +∇vT ). (44)

in which v is the particle velocity field, σ the stress tensor, f a body force density, ρ the mass

density, and Γ the inverse Hooke operator (Christensen, 1983; Pipkin, 1986). Viscoelasticity differs

from elasticity in that the inverse Hooke operator is a convolution operator (in time), rather than a
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temporally local multiplication operator. It is necessarily causal, to enforce causality in the system

response. It follows from (44) that the strain rate (right-hand side of the second equation) is the

convolution of the stress with the indefinite time integral of Γ. Instantaneous elastic response,

which we shall assume, requires that a nonzero strain rate arise immediately from a stress impulse;

therefore the kernel Γ can be decomposed as

Γ(t) = Γeδ(t) + γ(t),

in which Γe is the elastic inverse Hooke tensor (inverse of the unrelaxed modulus), and γ is a causal

kernel. Both the elastic kernel Γe and the memory kernel γ(t) act on symmetric tensor fields by

spatially-variable, symmetry-preserving linear operators. The conventional representation of such

things by 4-index tensors,

Γe =
(
Γeijkl

)∣∣3
i,j,k,l=1

, γ = (γijkl)|3i,j,k,l=1 ,

thus entail the symmetries

Γeijkl = Γejikl = Γeijlk = Γeklij , i, j, k, l = 1, 2, 3, (45)

and similarly for γ.

These fields are permitted to vary in space. To avoid technical complications, assume that the

viscoelastic material occupies all of R3. We require that, for some 0 < g∗ ≤ g∗,

1. Γe is elliptic: for any symmetric σ ∈ R3×3,

g∗‖σ‖ ≤ ‖Γe(x)σ‖ ≤ g∗‖σ‖, x ∈ R3; (46)

2. Γe ∈ L∞(R3,B(R3×3
symm));

3. γ ∈W 1,1(R, L∞(R3,B(R3×3
symm))).

For the “state space”H of the viscoelastic system we chooseH = L2(R3,R9) ≡ L2(R3,R3×3
symm)×

L2(R3,R3). The inner product in H is defined by

〈u1, u2〉 =
∫
R3

trσT1 σ2 + vT1 v2, u =

 σ

v

 .
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The assumptions 1-3 above and the symmetries (45) imply that

Au =

 Γeσ

ρv

 , u =

 σ

v

 ∈ H
defines a bounded, self-adjoint positive-definite operator A ∈ B(H).

Define the differential operator D : C∞0 (R3,R9)→ C∞0 (R3,R9) by

Du = −

 1
2(∇v +∇vT )

∇ · σ

 , u =

 σ

v

 ∈ C∞0 (R3,R9) ≡ C∞0 (R3,R3×3
symm)× C∞0 (R3,R3).

D is antisymmetric and densely defined in H. Denote its skew-adjoint extension also by D, and

the domain of the extension by V .

Let

b = lim
t→0+

γ(t, ·) ∈ L∞(R3,B(R3×3
symm)),

and

q = lim
t→0+

1[t,∞)
∂γ

∂t
∈ L1(R, L∞(R3,B(R3×3

symm))).

Then

γ ∗ ∂σ
∂t

= bσ + q ∗ σ.

Define B ∈ B(H) and Q ∈ L1(R,B(H)) by

Bu =

 bσ

0

 , Q(t)u =

 q(t)σ

0

 , u =

 σ

v


Finally, define f ∈ L2(R, H) by f = (0, f)T , which implicitly presumes that f ∈ L2(R4,R3) ≡

L2(R, L2(R3,R3).

With these definitions, the system (44) is formally equivalent to the evolution problem (2).

The theory developed here thus assures the existence of weak solutions of (44), in material models

including discontinuities of densities and/or elastic moduli and/or relaxation moduli.

To see that these solutions exhibit finite propagation speed, hence might reasonably be called

waves, we consider first the case of smooth coefficients. The following theorem and corollary express

minor variants of a well-known results about hyperbolic systems with smooth coefficients (see for

example Lax (2006), Ch. 4), and we shall omit the proofs:
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Theorem 7. In the formulation of the formal evolution problem (2), suppose that H = L2(Rn)p,

and that in addition to the hypotheses outlined in the first section, the operators A,B represent

multiplication by smooth p × p matrix-valued functions, and use the same letters to denote these

functions. Assume that Q is a smooth p× p matrix-valued function on Rn+1, absolutely integrable

as a function of its first coordinate with values in L∞(Rn)p×p
⋂
C∞(Rn)p×p. Assume also that D

takes the form

Du =
n∑
i=1

Ki
∂u

∂xi
, Ki ∈ Rp×p, KT

i = Ki, i = 1, ..., n, (47)

and that f ∈ C∞0 (Rn+1)p. Then

1. the causal weak solution u ∈ L2
loc(R, H) is smooth: u ∈ C∞(Rn+1)p, and

2. if φ ∈ C∞(Rn) satisfies

A+
∑

Ki
∂φ

∂xi
> 0

and supp(f)
⋂
{(x, t) : φ(x) > t} = ∅, then u(x, t) = 0 if φ(x) ≤ t.

Corollary 11. In the setting of Theorem 7, suppose that τ ∈ R satisfies

τA(x) +
n∑
i=1

Kiξi ≥ 0, x ∈ Rn, |ξ| = 1. (48)

If x0 ∈ Rn, t0 ∈ R satisfy

f(x, t) = 0 if τ |x− x0|+ t0 − t ≥ 0,

then u(x0, t0) = 0.

The following result on L2 multipliers is identical to Lemma 2.8.5 in (Stolk, 2000).

Lemma 2. Let (E,B, µ) be a measure space, {rm} ⊂ L∞(E,B, µ) with ‖rm‖L∞(E,B,µ) ≤ R ∈ R+,

{fm} ⊂ L2(E,B, µ) with ‖fm‖L2(µ) ≤ F ∈ R+ for all m ∈ N. Suppose that rm → 0 in µ-measure.

Then for any g ∈ L2(E,B, µ),

limm→∞

∫
E
rmfmgdµ = 0. (49)

Proof. Suppose on the contrary that such sequences {rm}, {fm} and square-integrable g exist, also

an η > 0, for which the left-hand side of (49) remains ≥ η along a common subsequence. Without

loss of generality, renumber the subsequence so that∣∣∣∣∫
E
rmfmgdµ

∣∣∣∣ ≥ η, m ∈ N. (50)
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Convergence in measure of {rm} means that for any ε > 0,

µ[Eε(rm)]→ 0 as m→∞, where Eε(rm) = {x ∈ E : |rm(x)| ≥ ε}.

Choose ε so that εF‖g‖L2(E,B,µ) < η/2.

From this definition and the Cauchy-Schwarz inequality, one sees that∣∣∣∣∫
E
rmfmgdµ

∣∣∣∣ ≤ ε∫
E\Eε(rm)

|fmg|dµ+R

∫
Eε(rm)

|fmg|dµ

≤ εF‖g‖L2(E,B,µ) +RF

(∫
Eε(rm)

g2dµ

) 1
2

<
η

2
+RF

(∫
Eε(rm)

g2dµ

) 1
2

By passing if necessary to a further subsequence, we may assume that

µ[Eε(rm)] ≤ 2−m ⇒
∑
m

µ[Eε(rm)] <∞.

Thus the characteristic functions of the sets Eε(rm) are almost everywhere convergent to zero as

m → ∞. Since |g|2 ∈ L1(E,B, µ), it follows from the Lebesgue Dominated Convergence Theorem

that for large enough m, (∫
Eε(rm)

g2dµ

) 1
2

<
η

2RF

Thus the left-hand side of (50) can be made smaller than η, a contradiction.

Lemma 3. Suppose that {am}∞m=1 ⊂ L∞(Rn) converges in measure to a ∈ L∞(Rn), and that

Am,m ∈ N and A ∈ B(L2(Rn)) are defined by

(Amu)(x) = am(x)u(x), (Au)(x) = a(x)u(x), u ∈ L2(Rn).

Then Am → A strongly. The same is true for similar sequences of operators on L2(Rn)p defined

by sequences of p× p matrix-valued functions whose components converge in measure.

Proof. In fact, the operators so defined are self-adjoint, and

‖Amu−Au‖2 =
∫

(am − a)[(am − a)u]u→ 0,

as follows from Lemma 2, taking am − a for rm, (am − a)u for fm, and u for g in the notation of

that lemma.
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Theorem 8. In the setting of Theorem 7, suppose that the matrix-valued functions A,B, and Q

are bounded and measureable, rather than smooth. Suppose that ε > 0, and that τ ∈ R+ satisfies

τA(x) +
n∑
i=1

Kiξi ≥ ε (51)

for almost every x ∈ Rn and every ξ ∈ Rn for which |ξ| = 1. Suppose further that Ω ⊂ Rn+1 is

bounded and open, and that f(x, t) = 0 if τ |x − x0| + t0 − t ≥ 0 for every (x0, t0) ∈ Ω. Then the

causal weak solution u of (2) vanishes in Ω.

Proof. According to the Lebesgue Differentiation Theorem, there are continuous

Ām, B̄m ∈ C0(Rn)p×p, Q̄m ∈ C0(Rn+1)p×p
⋂
L1(R, L∞(R3)p×p)

so that Ām(x) → A(x) for almost all x ∈ R3, and similarly for B and Q. Furthermore, these

sequences are uniformly bounded. Standard smoothing results show that we may replace C0 by C∞,

obtaining sequences Am, Bm ∈ C∞(Rn)p×p, Qm ∈ C∞(Rn+1)p×p
⋂
L1(R, L∞(R3)p×p) converging

to A, B, and Q almost everywhere and uniformly bounded. It follows that these sequences converge

in measure as well. From Lemma 3, the corresponding operators converge strongly, whence the

sequence of causal weak solutions {um}, obtained by replacing A with Am and so on, converges to

u in L2
loc(R, L

2(R)p), according to Theorem 4. Since (51) holds almost everywhere, it follows that

Am satisfies the spectral inequality (48) in Rn for sufficiently large m, whence Corollary 11 implies

that um vanishes in Ω. Since Ω is bounded, um → u in L2(Ω̄), whence the conclusion follows.

Corollary 12. Denote by cp the maximum quasi-p-wave velocity of the viscoelastic system (44),

defined as

cp = ess sup{λmax(Γe(x)[ξξT ]/ρ(x) : x, ξ ∈ R3, ξT ξ = 1}.

Suppose that (x0, t0) satisfies

|x− x0| > cp(t0 − t)

for every (x, t) ∈ supp f . Then the causal weak solution (σ,v) of (44) vanishes in a neighborhood

of (x0, t0).
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