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Topics

The limitations of linearization

The abstract forward model

Work based on the second-order equation of Lions-Magenes
[Lions and Magenes, 1972, Non-homogeneous boundary value
problems and applications, vol. 1]

Continuous dependence on coefficients

Second-order equation proven by Stolk
[Stolk, 2000, On the Modeling and Inversion of Seismic Data]

The future: using the abstract forward model for general
inversion, starting with 1-D
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The trouble with linearization
Linearizing around a smooth background

Most techniques used to solve inverse problems assume the
functions describing the medium are oscillatory perturbations
around a smooth medium.

c = c0 + δc

Smooth Background
c0

Rough Perturbation

δc
Combined Function

c
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The trouble with linearization
The reality of the situation

Linearization depends on the separation of the medium into a low
frequency (smooth) component and a high frequency (oscillatory)
component. This does not match with reality, where there is no
separation of scales.

Information at all frequencies
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The trouble with linearization
Where nonlinear inversion stands now

The good news: there are projects currently underway in
numerical nonlinear inversion (Dong Sun)

The bad news: there is no theoretical framework justifying the
ability to invert for nonsmooth media

Even worse news: not even in one dimension

The H1 theory and the work of Bube on discontinuous media
is insufficient for general discontinuous media.
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The ultimate goal: full nonlinear inversion

This project is the first step towards full nonlinear inversion.

Analysis of the forward problem for general coefficients (L∞)

Existence proof = convergence of finite element method
Continuity of solutions w.r.t. coefficients

The model is abstract enough that it covers many seismic
models

Acoustics
Elastics
Viscoelastics
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The Abstract Form of the Differential Equation

We consider the differential equation

Au′ + Du + Bu + R [u] = f ∈ L2(R,H)

H is a Hilbert space (like L2, functions with finite energy)

A ∈ B(H) is self-adjoint and positive-definite

D skew-adjoint with dense domain V ∈ H

B ∈ B(H)

R [u](t) =
∫

Q(t − s)u(s) ds, where Q ∈ C (R,B(H)) and
Q(t) = 0 for t < 0
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Example: Acoustics in the abstract framework

Consider the acoustic wave equation on a domain Ω ∈ R
3

ρ
∂v

∂t
= −∇p + f,

1

κ

∂p

∂t
= −∇ · v.

Define H = (L2(Ω))4. Then u = (p, v1, v2, v3)
T ,

A =




1
κ

0 0 0
0 ρ 0 0
0 0 ρ 0
0 0 0 ρ


 , D =




0 ∂
∂x1

∂
∂x2

∂
∂x3

∂
∂x1

0 0 0
∂

∂x2
0 0 0

∂
∂x3

0 0 0



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Example: Viscoelasticity

Under assumptions of linearity and causality, the viscoelastic wave
equation is

ρ
∂vi

∂t
=

∑

j

∂σij

∂xj

+ fi

∂σkl

∂t
=

∑

i ,j

Cijkl ∗t

1

2

(
∂vi

∂xj

+
∂vj

∂xi

)

One choice of C is C (x, t) = C̃ (x)(δ(t) − a(x)e−α(x)tH(t)). δ is
the Dirac delta, H is the Heaviside function, and ∗t denotes
convolution in time.
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Example: Viscoelasticity

Moving the convolution from the spatial derivatives to the time
derivatives, we get

fi = ρ(x)
∂vi

∂t
−

∑

j

∂σij

∂xj

0 =
∑

i ,j

Ĉijkl(x)
∂σij

∂t
−

1

2

(
∂vk

∂xl

+
∂vl

∂xk

)

+
∑

i ,j

bijkl (x)σij + qijkl(x, t) ∗t σij .

which fits with into the abstract model in a natural way

Au′ + Du + Bu + R [u] = f
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What Coefficients Correspond to Bounded Operators?

Our standard examples have H = L2.

If a function is in L∞, then the operator on L2 given by
multiplication against that function is a bounded operator.

‖fg‖2 ≤ ‖f ‖∞‖g‖2

So the abstract equation covers the case where we are trying to
solve a differential equation with L∞ coefficients for an L2 solution.
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Existence and uniqueness

Theorem

A unique causal solution to the differential equation

Au′ + Du + Bu + R [u] = f

exists provided that f ∈ L2(R,H) is causal: supp f ⊂ [T0,∞) for

some T0 ∈ R, and that the causal convolution kernel

Q ∈ L1(R,B(H)) is continuous in R+: Q ∈ C 0(R+,B(H)). The

solution u ∈ L2(R,H) and suppu ⊂ [T0,∞).
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Constructing the Solution to the Initial-Value Problem
Convergence of the Finite Element Method

Let {wk}
∞

k=1 ⊂ V form a basis for H in V . Define the functions

um(t) =
m∑

k=1

gkm(t)wk ,

where the gkm’s are determined by the differential equation

〈u′

m(t),Awl〉 − 〈um(t),Dwl 〉

+ 〈um(t),B∗wl〉 + 〈um(t),R∗[wl ](t)〉 = 〈f (t),wl〉, 1 ≤ l ≤ m,

um = 0 for t ≤ T0.
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Convergence of the Finite Element Method

Convergence of the finite element approximations follow from
energy estimates.

For the physical models, the abstract energy used here is the
physical energy of the system.
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Continuous Dependence on Parameters
Strong convergence of coefficients

If we have a sequence of equations

Amu′

m + Dmum + Bmum + Rm[um] = f

and the coefficients converge in the weak sense

lim
m→∞

‖(Am − A)w‖ → 0 for all w ∈ H

Then um converges in measure.

If H = L2(Rn) and the coefficients are L∞, then L1 convergence of
the coefficients gives strong convergence of the solutions.
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Continuous Dependence on Parameters
Differentiation with respect to parameters

We can also take the derivative of the solution to the differential
equation with respect to the coefficients.

If uh is the solution to the differential equation with coefficients

Ah = A + hδA, Bh = B + hδB , Qh = Q + hδQ

Then (uh − u)/h converges to the directional derivative of u in L2.
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What next?
The 1-D problem and acoustic transparency

With existence, uniqueness, and convergence with respect to
coefficients out of the way, the next step is to head towards
nonlinear inversion of the 1-D problem.

What do we know so far?

There is a one-to-one correspondence between H1 impedances
and L2 impulse responses h which satisfy the acoustic
transparency property

〈f , h ∗ f 〉 ≥ ǫ‖f ‖2

Impedances which are functions of bounded variation satisfy
acoustic transparency

There exist non-BV functions which are not transparent
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Conjecture

Based on what we know, we make the following conjecture:

The natural realm of inversion for one-dimension is bounded
variation

If the impedance is not BV, then transparency will fail
If the impedance is BV, then nonlinear inversion is possible

We hope to approach these problems using the convergence results
for the abstract problem.
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Conclusion

We have shown that first-order integro-differential equations
with coefficients forming bounded operators on Hilbert spaces
have unique solutions in an appropriate sense.

These equations include the acoustic wave equation, the
elastic wave equation, and the viscoelastic wave equation with
discontinuous coefficients as special cases.

These solutions are continuous with respect to all parameters,
that is, the coefficients of the equation, the initial condition,
and the forcing function.

We hope to use these results to establish nonlinear inversion
for the one-dimensional problem
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