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Highlights

Classical Semblance is equivalent to least squares data fitting
and has local maxima.

All stationary points of Differential Semblance are global
minimizers.

A recent approach to Differential Semblance has some
numerical problems. I proposed an alternative approach to
overcome these difficulties.



The Simplest Acoustic Model

The acoustic wave equation where density is considered constant
and equal to one, with a point source:

1

c2(x)

∂2p

∂t2
(x , t; xs)−∇2p(x , t; xs) = f (t)δ(x − xs)

x is the position vector
xs is the position of the point source
f (t) is the source time function
c(x) is the particle velocity
p(x , t; xs) is the pressure



Forward map: S [c] = p|Y=(xr ,t;xs) (predicted seismic data)
xr is the receiver position and xs is the source position.

Inverse problem: given observed seismic data d , find velocity field
c so that

S [c] ' d

The inverse problem is large scale and nonlinear.



Linearization

Write c = v(1 + r), then δp(x , t; xs) satisfies

1

v2(x)

∂2δp

∂t2
(x , t, xs)−∇2δp(x , t, xs) =

2r(x)

v2(x)

∂2p

∂t2
(x , t, xs)

Linearized forward map: F [v ]r = δp|Y=(xr ,t;xs)

v smooth, r oscillatory ⇒ F [v ]r approximates primary
reflections

Error consists of multiple reflections.

No mathematical results are known which justify these
observations in any rigorous way.



Convolutional model for layered media

(Theoretical derivation by Winslow 2000, based on linearization
and high frequency approximation)

F [v ]r(t, h) = f (t) ∗t r(T0(t, h))

h is the half offset
t0 is the traveltime at zero offset
f (t) is the source time function

r(t0) = δv(t0)
v(t0)

T0(t, h) is a change of variables function. It is the inverse function
of T (t0, h) (Hyperbolic approximation to two-way traveltime)
Ideal case: f (t) = δ(t). Then

F [v ]r(t, h) = r(T0(t, h))



Classical Semblance is equivalent to least squares data
fitting

Turn the linearized inverse problem into a least squares problem:
given CMP data d , find v , r so that

min J[v , r ] = ‖F [v ]r − d‖2

=

∫ ∫
dt dh (r(T0(t, h))− d(t, h))2

= ‖d‖2 +

∫ ∫
dt0 dh

∂T

∂t0
(t0, h)× (r(t0)

2 − 2r(t0)d(T (t0, h), h))

= ‖d‖2 +

∫
dt0 j(t0)r(t0)

2 − 2

∫
dt0 r(t0)

∫
dh

∂T

∂t0
(t0, h)×

×d(T (t0, h), h)



Then
J[v , r ] = ‖ d ‖2 + < jr , r > − 2 < r ,Sd >,

where Sd is the weighted stacking

Sd [v ](t0) =

∫
dh

∂T

∂t0
(t0, h)d(T (t0, h), h),

and

j [v ](t0) =

∫
dh

∂T

∂t0
(t0, h).

Since Sd , j only depend on v , then if v is fixed, we can get the
optimal r = 1

j Sd

min J[v , r ] = ‖d‖2− <
1

j
Sd ,Sd >

⇐⇒ max JS [v ] = <
1

j
Sd ,Sd >

Then the classical semblance turns out to be equivalent to the
least squares data fitting.



Differential Semblance

Introduce nonphysical model r(t0, h). Physical model satisfies
constraint ∂r

∂h = 0.

min J[v , r ] =

∫ ∫
dt dh (r(T0(t, h), h)− d(t, h))2

=

∫ ∫
dt0 dh

∂T

∂t0
(t0, h)(r(t0, h)− d(T (t0, h), h))2

The objective function is very easy to minimize without constraint:
r(t0, h) = d(T (t0, h), h). Then the model is infeasible since∥∥ ∂r

∂h

∥∥2
> 0. To reduce the infeasibility: minv

∥∥ ∂r
∂h

∥∥2

Differential Semblance objective function is

JDS [v ] =

∥∥∥∥ ∂

∂h
d(T (t0, h), h)

∥∥∥∥2



Comparison between Classical Semblance and Differential
Semblance

(a) Classical Semblance (Chauris, 2001):

Figure: Classical Semblance cost function



(b) Differential Semblance (Chauris, 2001):

Figure: Differential Semblance cost function



Motivation for DS

DS

All stationary points of DS are global minimizers.
(Symes, TR99-09)
DS uses gradient method to solve the optimization problem.

OLS

Output Least squares objective function has local minima and
these local minimizers are far from any global minimizer.
Gradient methods are unreliable.
Computational cost for global optimization methods is high.



A recent approach to DS (Jintan Li, 2007)

Objective function:

J[v ] =

∥∥∥∥ ∂

∂h
d(T (t0, h), h)

∥∥∥∥2

J[v ] and ∇J[v ] have to be computed numerically. But grid
points in the t0 axis are not mapped to grid points in the t
axis.

d(t, h) → d(T (t0, h), h)

Local cubic interpolation is needed to compute the oscillatory
data d which will cause error.



Discretization

t0j = j∆t0, hi = i∆h,

d(T (t0j , hi ), hi ) ' d int(T (t0j , hi ), hi )

∂

∂h
d(T (t0j , hi ), hi ) '

1

∆h
(d int(T (t0j , hi+1), hi+1)−d int(T (t0j , hi ), hi ))

Define the discrete moveout derivative operator:

M[v ]d(t0j , hi ) =
1

∆h
(d int(T (t0j , hi+1), hi+1)− d int(T (t0j , hi ), hi ))

Thus the discrete objective function

J[v ] =
∑
ij

|M[v ]d(t0j , hi )|2



Figure: Original CDP Figure: Corrected CDP



Figure: Instability of DSVA velocity estimates



Alternative approach to DS

J[v ] =

∥∥∥∥(p
∂d

∂t
+

∂d

∂h
)(t, h)

∥∥∥∥2

where slowness

p(t, h) =
∂T

∂h
(T0(t, h), h)

This approach involves interpolation of smooth function p(t, h)
instead of oscillatory data d(t, h), then the interpolation error in p
is smaller than the previous approach. Then the noises in J and
∇J are smaller. Thus this optimization is more stable.



Recall

J[v ] =

∥∥∥∥(p
∂d

∂t
+

∂d

∂h
)(t, h)

∥∥∥∥2

Since t is oversampled, we don’t have problem in computing ∂d
∂t .

Since offset h is often undersampled, ∂d
∂h has to be calculated

carefully.
How to deal with ∂d

∂h ?



Proposed strategy

If v0 −∆v ≤ v ≤ v0 + ∆v , then

p
∂d

∂t
− ∂d

∂h
' N[v0]d + (p − p0)

∂d

∂t

where operator N has been defined by

N[v ]d(tj , hi ) = M[v ]d(T0(tj , hi ), hi )

Then

(p
∂d

∂t
− ∂d

∂h
)(tj , hi ) ' N[v0]d(tj , hi ) + (p − p0)

∂d

∂t
(tj , hi )

This will be accurate if fmax ≤ f (∆v)



Summary:

CS vs. DS

Recent approach vs. my approach

Future works:

Justify the proposed strategy.

Implement the algorithm



Thank you
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