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Highlights

@ Classical Semblance is equivalent to least squares data fitting
and has local maxima.

@ All stationary points of Differential Semblance are global
minimizers.

@ A recent approach to Differential Semblance has some
numerical problems. | proposed an alternative approach to
overcome these difficulties.
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The Simplest Acoustic Model

The acoustic wave equation where density is considered constant
and equal to one, with a point source:

1 0%p

20 02 (x t;xs) — V2p(x, t; xs) = F(£)6(x — xs)

X is the position vector

Xs is the position of the point source
f(t) is the source time function

c(x) is the particle velocity

p(x, t; xs) is the pressure
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Forward map: S[c] = p|y—(x,,tx,) (predicted seismic data)
X, is the receiver position and xs is the source position.

Inverse problem: given observed seismic data d, find velocity field

¢ so that
S[c] ~d

The inverse problem is large scale and nonlinear.
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Linearization

Write ¢ = v(1 + r), then dp(x, t; xs) satisfies

2r(x) 6%p
— 2 — -
(x,t,xs) — Vop(x, t, xs) 2(x) 982 (x, t,xs)

1 0%p
v3(x) Ot?

~—

Linearized forward map: F[v]r = 0ply—(x, t:x)
@ v smooth, r oscillatory = F[v]r approximates primary
reflections
@ Error consists of multiple reflections.

@ No mathematical results are known which justify these
observations in any rigorous way.
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Convolutional model for layered media

(Theoretical derivation by Winslow 2000, based on linearization
and high frequency approximation)

Flv]r(t, h) = f(t) % r(To(t, h))

h is the half offset
tp is the traveltime at zero offset

f(t) is the source time function

ov
r(to) = v((tf)o))

To(t, h) is a change of variables function. It is the inverse function
of T(to, h) (Hyperbolic approximation to two-way traveltime)
Ideal case: f(t) = o(t). Then

Flv]r(t, h) = r(To(t, h))
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Classical Semblance is equivalent to least squares data
fitting

Turn the linearized inverse problem into a least squares problem:
given CMP data d, find v, r so that

min J[v,r] = |F[v]r — d||?

//dt dh (r(To(t, h)) — d(t, b))
i+ [ [ do an O (10, x (r(10)? = 2r(10)d( T (o, ). )

oT
= Hd” +/dt0j 1.'0 2/dl’0 r(to / (l’o,h) X
Jdty

Xd( (th )7 h)
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Then
Jv, = d|?+<jr,r>—2<r5d>,

where Sd is the weighted stacking

Sd[v(to) = /dh gtTo(to,h)d(T(to,h),h),

and
iV(to) = /dh gtTO(to,h).

Since Sd, j only depend on v, then if v is fixed, we can get the
optimal r = jl.Sd

1
min J[v,r] = ||d|* — < de, Sd >

1
<= max Js[v] = < de,Sd >

Then the classical semblance turns out to be equivalent to the

least squares data fitting. @



Differential Semblance

Introduce nonphysical model r(tp, h). Physical model satisfies
constraint % =0.

min J[v,r] = //dt dh (r(To(t, h), h) — d(t, h))?
— //dto dh — 7 to,h)( (to, h) — d(T(to, h), h))?

The objective function is very easy to minimize without constraint:
r(to, ) = d(T(to, h), h). Then the model is infeasible since

[k H > 0. To reduce the infeasibility: min, |95 H

D|fFerent|a| Semblance objective function is

2
Jos[v] = H T(to, h), h)




Comparison between Classical Semblance and Differential

Semblance

(a) Classical Semblance (Chauris, 2001):

T T T L
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Figure: Classical Semblance cost function
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(b) Differential Semblance (Chauris, 2001):

/
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Figure: Differential Semblance cost function
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Motivation for DS

e DS
e All stationary points of DS are global minimizers.
(Symes, TR99-09)
o DS uses gradient method to solve the optimization problem.

e OLS

e Output Least squares objective function has local minima and
these local minimizers are far from any global minimizer.

o Gradient methods are unreliable.

e Computational cost for global optimization methods is high.
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A recent approach to DS (Jintan Li, 2007)

@ Objective function:

Jv] = H T (to, h), h) 2

e J[v] and VJ[v] have to be computed numerically. But grid
points in the ty axis are not mapped to grid points in the t
axis.

d(t, h) — d(T(to, h), h)

@ Local cubic interpolation is needed to compute the oscillatory
data d which will cause error.

P
e



toj = jAty, hj = iAh,
d(T(toj, h), hi) =~ d™ (T (to;, hi), hi)

8 1 in in
5d(T(tojs i), hi) =~ 7= (d YT (toj, hit1), hiv1)—d"™ (T (toj, hi), hi))

Define the discrete moveout derivative operator:

1

M[V]d(toj, h,') = Ah

(d™ (T (toj, hit1), hiv1) — d™ (T (toj, hi), i)
Thus the discrete objective function

JIvl = Y IM[V]d(toj, hi)?

)
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Figure: Instability of DSVA velocity estimates



Alternative approach to DS

od od 2

M= H("at + %%t )

where slowness

p(t, h) = aa_/’_’_(TO(ta h)? h)

This approach involves interpolation of smooth function p(t, h)
instead of oscillatory data d(t, h), then the interpolation error in p
is smaller than the previous approach. Then the noises in J and
VJ are smaller. Thus this optimization is more stable.
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Recall
od  od 2

= |05 + 500

Since t is oversampled, we don't have problem in computing %.
Since offset h is often undersampled, % has to be calculated
carefully.

How to deal with %?
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Proposed strategy

If vg — Av < v < vy + Av, then

od od

od
Por an = Nlvold + (p — Po)at

where operator N has been defined by
N[vld(tj, hi) = M{v]d(To(t), hi), hi)
Then

(057 995, ) = Nl ) + (p — po) o (5, )

This will be accurate if fx < f(Av)
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Summary:
e CSvs. DS

@ Recent approach vs. my approach

Future works:
@ Justify the proposed strategy.

@ Implement the algorithm
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Thank you
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