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The Lions Method for Solving Hyperbolic PDEs

Christian Stolk, in his 2000 PhD thesis updated the classic method
of Lions for solving hyperbolic problems.
This method takes a second-order hyperbolic equation, such as the
elastic wave equation
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,

and rewrites it in an operator form:

(A(t)u′(t))′ + D(t)u(t) + B(t)u(t) = f (t).



The Lions Method and Finite Elements

Existence and uniqueness for the problem

(A(t)u′(t))′ + D(t)u(t) + B(t)u(t) = f (t).

is then proven by approximating u in the spacial direction

um(t) =
m∑

k=1

gkm(t)wk .

These approximations solve ordinary differential equations, and
they converge thanks to energy inequalities.
This approximation and convergence is then a theoretical
justification of the method of finite elements.

◮ Stolk’s results are currently unpublished.



Viscoelastic Finite Elements

Our question is, can we apply this same technique to the
viscoelastic wave equation
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and if so, what additional information does this give us?
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The answer is yes, we can apply the Lions method to
viscoelasticity. The resulting existence and uniqueness proof then
gives us a few additional facts.

◮ Justification of the finite element method for general
hyperbolic integro-differential equations, not just first-order
hyperbolic equations.

◮ The energy inequalities used in the proof also give continuity
results for the problem, not just for the initial conditions and
forcing functions, but continuity of the solution with respect
to the coefficients.

◮ The solution of the first-order differential equation maintains
the hyperbolicity seen in the second-order equation, but it
manifests itself differently.



Operator Form of the Equation

We rewrite the viscoelastic equation in operator form,

A(t)u′(t) + D(t)u(t) + B(t)u(t) + R [u](t) = f (t),

where D takes the place of the spacial derivatives, B is a general
lower-order term, and R is the integral term representing
viscoelasticity defined by

R [u](t) =

∫ T

0

Q(s, t)u(s) ds,

Theorem
Suppose u0 ∈ H, f ∈ L2([0,T ],H), the the differential equation

has a unique solution u ∈ L2([0,T ],H) which depends

continuously on u0 and f .



Sketch of proof

For simplicity we assume that H is separable. Let {wk}
∞

k=1 ⊂ V

form a basis for H in the sense that finite linear combinations of
wk ’s are dense in H. Define the functions

um(t) =

m∑

k=1

gkm(t)wk ,

where the gkm’s are determined by the differential equation

〈u′

m(t),A(t)wl〉 − 〈um(t),D(t)wl 〉

+〈um(t),B(t)wl〉 + 〈um(t),R∗[wl ](t)〉 = 〈f (t),wl 〉,

um(0) = ξkm,

for 1 ≤ l ≤ m.



Continuity

Theorem
Consider the equations

Ãũ′(t) + D̃(t)ũ(t) + B̃(t)ũ(t) + R̃[ũ](t) = f (t),

Au′(t) + D(t)u(t) + B(t)u(t) + R [u](t) = f (t).

If the coefficients are close in norm independent of t, A is positive

definite, and R and B are positive semi-definite, then ũ is close to

u in L2([0,T ],H).

Theorem
Differentiation with respect to the coefficients of the differential

equation result in solutions with one less order of regularity in the

spacial direction.



Hyperbolicity

Returning to the elastic wave equation
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if we have a solution u ∈ C 1([0,T ],H1(Rn)), then
∂u/∂t ∈ C ([0,T ],L2(Rn)).
For the first-order system
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we can no longer differentiate in time. So what is the equivalent
property for this system?



Hyperbolicity - A One-D Example

As an example, consider the basic one-dimensional wave equation

∂2u

∂t2
=

∂2u

∂x2

with initial condition u(x , 0) of the form
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and ∂u/∂t(x , 0) = 0.



A One-D Example

Solving this equation gives the solution
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A One-D Example

If you take a derivative in time, you get a solution that looks like
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which is also less continuous in the x direction.



Hyperbolicity From the First-Order System

This is true in general. For a hyperbolic equation, if you
differentiate in time, you lose one order of regularity in space.

◮ The question: How can we see this phenomenon in the first
order system?

◮ The answer: if we smooth the solution in time, it should also
become smoother in space.

In other words, if we have a solution u ∈ C ([0,T ],L2(Rn)), then

η ∗ u(x , t) =

∫
∞

−∞

u(x , τ)η(t − τ) dτ

∈ C∞([0,T ],H1(Rn)),

for any η ∈ C∞

c (0,T ).
Recall that a function can be “made smoother” by taking the
convolution with a smooth function. For instance, if f ∈ L2(R)
and g ∈ H1(R), then f ∗ g ∈ H1(R) since (f ∗ g)′ = f ∗ g ′.



Smoothing Example

Returning to the prior example. Let’s pretend we have a solution
to the wave equation and a smoothing function.
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Smoothing Example

Taking the time convolution of η with u gives
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which is nice and smooth.


