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SUMMARY

The relative efficiency of Common Azimuth wave equation Hept-
gration based on the double square root equation makes itran-a
tive engine for use in automated velocity updating schei®es such
automated velocity analysis procedure is Differential Blamce Opti-
mization, which constructs velocity updates to reduce, ewehtually
minmize, a quantitative measure of image gather misfoogssiVe
review the construction of a differential semblance vejoainalysis
tool based on common azimuth migration, and present somex2D e
amples. These examples illustrate some of the promise, @and sf
the potential pitfalls, of this approach to velocity anays

MIGRATION IN DSR FORMULATION

Wave equation migration is based on the "survey sinkingai@@aer-
bout, 1985). The seismic fiefo(x,yr, Xs, s,z t) is a function of source
and receiver position$xs,ys) and (x-,yr) on a horizontal datum at
depthz, and timet. It will be convenient to describe the field in
terms of midpoint and (half-)offset vectorsn, = (X +Xs)/2, hx =
(% —Xs)/2, similar expresions foy coordinates. The data are mod-
eled as a sampling of this field for a depth near the surfacsursg
the absence of downgoing energy, identical depths for scamd re-
ceiver, zero phase wavelet, and several other assumptioich wiust
usually be satisfied approximately by preprocessing, tlopggator
which gives the rate of change in this field with depth is theaked
double square root (“DSR”) operator. It is conventionabxtpress this
operator by its dispersion relation:

w2

o 3 [, ko -+l ke, 7

w2
+ - _
VP

wherevs andyv; are respectively velocity at extrapolated source and re-
ceiver positions, an, andky, are offset and midpoint wavenumbers.
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Except in the case of constant velocity, the action of thisrafor must
be approximated to achieve reasonable computational dostery
large literature discusses a variety of approximations, hake fol-
lowed the so-called Generalized Screen Propagator (“G&#oach
(de Hoop et al., 2000), based on a certain expansion of the @SR
erator in a series of products of functions of the space biwsaand
functions of corresponding wavenumbers.

In the 3D case, this approximate depth extrapolation canppéea
within the Common Azimuth framework to produce an econoinica
computation of the seismic field (Biondi and Palacharla,6)99n
this report we will present only 2D examples, for which Conmmo
Azimuth migration simply amounts to solving the DSR equatar

a suitable approximation. Accordingly the field will be ‘et as
p(x,Xs,zt) or alternatively in terms of 2D midpoint and offset co-
ordinatesp(m,h,zt).

DIFFERENTIAL SEMBLANCE PRINCIPLE

According to Claerbout (1985), the image is extracted froeseismic
field at coincident source and receiver locations and tins@sce the
depths are already constrained to be the same, and the tiiablea

t actually represents the lag between source and receives tithe
image or estimated reflectivity of the Earth is given in terofighe
notation introduced above byx,z) = p(x,0,z,0).

Information about velocity is also inherent in the seism@di The
imaging principle introduced by Claerbout (1985) alsoestdhat neg-
ligible energy should be present in the seismic field at nanaffset at
zero time (or at nonzero time for zero offset (Sava and FoaGl5)),
provided that the migration velocity is at least kinemaftic&orrect
That is, the zero-time offset image volumg(x,z h) = p(x,h,z0)
should befocusedat h = 0, and failure to focus indicates need for a
velocity correction.

It has become customary to display the velocity diagnostigent of
the seismic field using so-called image gathers in the soajtangle
or offset ray parameter domains (Prucha et al., 1999; Rieket Sava,
2002), Focusing in the offset domain is equivalent to flatr@fsmage
gathers in the angle domain. In this report we will displaglesively
offset image gathers, i.en(x,z h) for fixed x.

Several authors have suggested automated methods foityéhver-
sion (Toldi, 1989; Cao et al., 1990; Biondi and Sava, 2004)st4uch
suggestions are based gptimization of a quadratic form in the image
volume Jv) = %HPnthZ, which is implicitly a function of the veloc-
ity (and the data). The symbdl- || denotes the root mean square of
the quantity between the upright bars, over all of its depahdari-
ables. The operatd, is to be chosen so thattakes its extreme value
at correct velocity. Since the quadratic fodns nonnegative, velocity
estimation is reduced to the optimization probl&,e) = miny J(v).

Use of efficient gradient-based optimization methods eeldab New-
ton’s method requires thdtbe smooth. As shown by Stolk and Symes
(2003), smoothness dfas function of velocity model and data traces
requires that the operat®, be (pseudo)differential. A natural choice
of differential semblancé‘DS”) operator B, for wave equation mi-
gration is multiplication byn: since correct choice of velocity concen-
trates energy dt= 0, multiplying the offset image volume thyshould
result in a very small mean square when the velocity is Kiriealyy
correct. According to Stolk and Symes (2003)with this choice of
R, is regular as a function of velocity and data, hence amenable
gradient-based optimization method. Shen et al. (20032 damon-
strated a velocity analysis method using this choice of D&aipr in
conjunction with shot-record migration.

Gradient Calculation
The gradient of] represents its derivative via the inner (dot, scalar)
product(-,-):
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in which Dyry, denotes the Jacobian or derivative of the offset image
volume with respect to velocity, anbyr}, its adjoint or transposed
operator. It follows thatld = Dvrﬁhzrh.

(v),8V) = (rn,h®Dyrndv) = (Dyrj;(h?ry), dv),

The so-calledadjoint statealgorithm compute®,r}; via anupward
marching scheme in depth, from maximal depth until the serfave
write the propagation of the fielfrom depthz, _; to depthz; =z_1 +
Az as

pi =H(Vi-1)pi-1
(vi_1 being the velocity in this depth layer). By implicit differgation,
the perturbationdp; at interfacei in the seismic field resulting from
velocity perturbationdv;_1 in layeri — 1 and field perturbatiod p;_1
at interfacel — 1 should satisfy

opi =DyH(Vi—1)pi-1 OVi—1 +H(Vi_1)0pi—1
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. In matrix notation,

dpo 0 0 0 opo
op1 H(w) © 0 op1
= +
opN 0 H(w-1) O Spn
0 0 0 dVo
DyH(vo)po O 0 ovi
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Introducing the notationsl andDyH p for the matrces appearing in the
preceding equation, anib anddv for the vectors of field and velocity
perturbations, the matrix equation takes the compact form

dp=HJop+ DyHpdv

Thus
dp= (I —H) 'DyHpdv

Denote byT the operator which samples the figid..,t) at timet =0
(if the depth extrapolation is carried out in the frequenoyndin, as is

commonly done, thefi represents summation over frequency). Then

rh =T pwhenceDyrp,dv=Top=T(l — H)*lDVH dv whencellJ =
Dyr:P2rp = DyH*((I = H)~1)*T*P2rh. The operatof * is simply the
operator which inserts its argument (a spatial field) as th@ level of
an (otherwise zero) space-time field. SiceH is lower triangular,
(I—H)* is upper triangular, and we can write by inspection a reoarsi
for the solutiorw of (1 —H)w = T*P?ry:

Wi —HW) Wis1 = (T*Prn)z—z, i=0,.N Wyy1=0 (4)

In terms of theadjoint state field wthe gradient o may be expressed
as

0J—z = (DyH(Vit1)piv1)*wi, i=0,..N

To summarize: the gradient computation consists of

e Downward propagation of the seismic wavefigicuntil to
a maximum deptlzmay at each step reading aff, layer by
layer, then

e Upward propagation of the adjoint wavefieldo the surface

and evaluation of the gradient per the preceding formula, at

each step of the upward propagation.

We emphasize that this computatioreigact i.e. produces the actual
gradient of the objectivd up to a machine precision error, and re-
quires roughly three times the floating point operations @dwnward
propagation. On the other hand it requires the entire seigmvefield

p to be stored, for all depth levels, as this field is accessentder
inverse to its computation in the adjoint state recursign Gfiewank
(2000) discusses options for avoiding full storagg@oivhich could be
onerous in 3D.

Smoothness and Bound Constraints

The theory of depth migration suggests that migration \lanodels
should be smooth on the wavelength scale (an often ignosdcre
tion!). Therefore the model must be kept relatively smoathrdy the
optimization. Several schemes for model representatiahregular-
ization satisfy this smoothing requirement. We chose tapatrize
the model on a regular grid which is coarse on the wavelencdles

and interpolate the velocity samples to the (fine) regula gf the
wave equation computation by cubic B-spline interpolatios= Bm,
wheremis the vector of B-spline nodal parameters &g the inter-
polation operator. We carry out optimization for these na@aame-
ters directly using the gradient dfwith respect tan:

Ond =B*0J.

Therefore the adjoinB* of the B-spline interpolation operator is also
required.

For a variety of reasons, reasonable behaviour of the apiion re-
quires that all updates of the velocity model satisfy prieésd upper
and lower bounds. For example, the GSP remains accuratef oinéy
velocity remains above a specified reference velocity. Vg wom-
position of the velocity nodal parameters with a sigmoidaiction
to assure that the prescribed bounds were maintained gagéss of
the iteration, even though our optimization algorithm (ted mem-
ory BFGS algorithm (“LBFGS”) (Nocedal and Wright, 1999) didt
explicitly assure bound constraints.

EXAMPLES

We generated and processed several synthetic tests; venpties re-
sults of two such tests. Both are based on the Marmousi madkel a
used the same data geometry as the blind test data set @¢pente
Grau, 1991). We generated the test data using a time domaéendif:
ference linearized (“Born modeling”) code. The synthetiaree was

in all cases a point dilatation with trapezoidal bandpater fj#t-10-25-
35 Hz) zero phase time dependence. As was true of the oriyiagl
mousi data, the top surface of the model was free (pressigase),
hence generated a ghost which we ignored, even though thesdat
acquired violated the theoretically necessary zero-pbasstraint.

The first example modeled the perturbation of the data fromesat
background velocity (1.5 km/s at surface, 4.5 km/s at 3 kntlgep
resulting from a short scale velocity perturbation obtdibg subtract-
ing from the original model a smoothed version. To accorhpiie
smoothing, we used the Seismic Unix utiligmooth2 (Stockwell,
2001) with a smoothing length of 20 m. To represent trial vities,
we used a grid of 6 points and 5 points ire.

Figure 1 shows migrated images (ir€x,z) = rp(x,0,2) at the initial
velocity model and after 20 steps of LBFGS. The initial vélpevas
approximately 30% too high in the near-surface part of thelehae-
sulting in severe mis-focusing and reflectors mapped ceneidly too
deep. The final velocity is sufficiently accurate that thegmis almost
perfectly focused, and depths are essentially correct.

The second example in contrast combined a more complex taahg)
velocity with a simpler reflectivity (velocity perturbatip The model
is the Marmousi velocity, smoothed usiegooth2 on a length scale
of 200 m. The velocity perturbation consists of fourteemévspaced
flat horizontal reflectors. Since the model is more laterhéiyeroge-
neous, we used a finer grid of ten nodexiand 15 nodes iz. Fig-
ure 2(a) shows the layered initial velocity model, the itedrvelocity
model after 30 iterations of LBFGS, and for comparison theet
smoothed Marmousi velocity model used to generate the takig-
ure 2(b) we show the result of the corresponding migrations.

While the velocity estimate (Figure 2(a), middle) showsiclevidence
of the fault block structure, which gives this model its kimetic com-
plexity, the migrated image (Figure 2(b), middle) does mproduce
the flat structure of the target reflectivity. Perhaps thé lafcdata
near the edges is responsible for some of the sag at the artdbeb
reflector depths in the middle are also not correct.

To assess this result, we created a number of other disp@gs. of
these appears as Figure 2(c), which exhibits an offseedcabjuared
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offset image gather from the middle of the model. The left pliows

the image gather from migration with the initial velocitpncadisplays
the lack of focusing one would expect from a kinematicallgacurate
velocity. The middle gather is extracted from the migratouriput at
the inverted velocity - the high-offset energy is esselytslippressed.
For comparison, we also show on the right the same gatheupeod
by migrating with the “true” velocity, which does not appeaore

focused than the middle figure. In fact the objectighe mean of all
such gathers) at the inverted velocity is actually sligistiyallerthan

the value produced at the “true” velocity!

DISCUSSION

We draw two tentative conclusions from these results. Ristveloc-
ity estimation process described in this paper is has beplemented
successfully: the optimization succeeds in producing $eduimage
gathers, i.e. satisfies the diagnostic test for velocityeminess. Sec-
ond, velocity estimation involves a considerable degremoofunique-
ness (Stork and Clayton, 1991); therefore the results ougonaatic
process like the one described here may be steered by no@ging
artifacts, or data errors to one or another of the many efguivanod-
els, all equally consistent with the data at least in a kirtensznse.

A number of important preprocessing issues strongly atette suc-
cess or failure of our tests with DS velocity inversion:

Tapering: The image volume can be severely affected by any sharp

cutoff, on any axis. This means that the data must be tapersdtsev-

eral dominant wavelengths in time and all spatial axes. $apbring

can often be ignored in image production, as the artifacteserated
tend to “stack out”, i.e. be small at zero offset. Howeveresddifacts

are coherent noise and can cause large errors in automdtegitye
estimates.

Filtering and muting: Incoherent noise is generally harmless. How-

ever coherent high frequency artifacts can have a very kifget, as
can critical reflections and refractions, diving waves, atlter often-
strong data components not predicted by specular refletttemry.

Proper choice of extrapolation step, reference velocity: The choice
of Az critically affects the quality of the gathers, as does theade
tion between reference and migration velocities. Proplercsen of
Az depends on the minimum of the migration velocity field; eitthe
velocity models allowed in the search must be constrainesh&oe
a common lower bound compatible with a fixed choiceAaf or the
latter must be adjusted as the optimization proceeds. Astiadayrid-
ding enormously complicates the construction of reliatgtnization
algorithms, we have used a fixed lower bound as a constraitiieon
velocity search space. Likewise the reference velocitytmasstray
too far from the velocity update to maintain kinematic aecyrin the
GSP.
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Figure 2:
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(a) Velocity model updating: initial velocity (linear) ohe left, updated velocity after 30 iterations of LBFGS in thieldle, true velocity on the right
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(b) Migration: migration at initial velocity on the left, miation at updated velocity in the middle, migration at tveéocity on the right
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(c) Display of|h.rp(x,z, h)|2 at positionx = 5.250km: at initial velocity on the left, updated velocity imet middle, at true velocity on the right



