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SUMMARY
The relative efficiency of Common Azimuth wave equation depth mi-
gration based on the double square root equation makes it an attrac-
tive engine for use in automated velocity updating schemes.One such
automated velocity analysis procedure is Differential Semblance Opti-
mization, which constructs velocity updates to reduce, andeventually
minmize, a quantitative measure of image gather misfocussing. We
review the construction of a differential semblance velocity analysis
tool based on common azimuth migration, and present some 2D ex-
amples. These examples illustrate some of the promise, and some of
the potential pitfalls, of this approach to velocity analysis.

MIGRATION IN DSR FORMULATION

Wave equation migration is based on the ”survey sinking” idea (Claer-
bout, 1985). The seismic fieldp(xr ,yr ,xs,ys,z,t) is a function of source
and receiver positions(xs,ys) and (xr ,yr ) on a horizontal datum at
depth z, and timet. It will be convenient to describe the field in
terms of midpoint and (half-)offset vectors:mx = (xr + xs)/2, hx =
(xr − xs)/2, similar expresions fory coordinates. The data are mod-
eled as a sampling of this field for a depth near the surface. Assuming
the absence of downgoing energy, identical depths for source and re-
ceiver, zero phase wavelet, and several other assumptions which must
usually be satisfied approximately by preprocessing, the propagator
which gives the rate of change in this field with depth is the so-called
double square root (“DSR”) operator. It is conventional to express this
operator by its dispersion relation:
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wherevs andvr are respectively velocity at extrapolated source and re-
ceiver positions, andkh andkm are offset and midpoint wavenumbers.

Except in the case of constant velocity, the action of this operator must
be approximated to achieve reasonable computational cost.A very
large literature discusses a variety of approximations, Wehave fol-
lowed the so-called Generalized Screen Propagator (“GSP”)approach
(de Hoop et al., 2000), based on a certain expansion of the DSRop-
erator in a series of products of functions of the space variables and
functions of corresponding wavenumbers.

In the 3D case, this approximate depth extrapolation can be applied
within the Common Azimuth framework to produce an economical
computation of the seismic field (Biondi and Palacharla, 1996). In
this report we will present only 2D examples, for which Common
Azimuth migration simply amounts to solving the DSR equation or
a suitable approximation. Accordingly the field will be written as
p(xr ,xs,z,t) or alternatively in terms of 2D midpoint and offset co-
ordinatesp(m,h,z,t).

DIFFERENTIAL SEMBLANCE PRINCIPLE

According to Claerbout (1985), the image is extracted from the seismic
field at coincident source and receiver locations and times.Since the
depths are already constrained to be the same, and the time variable

t actually represents the lag between source and receiver times, the
image or estimated reflectivity of the Earth is given in termsof the
notation introduced above byr(x,z) = p(x,0,z,0).

Information about velocity is also inherent in the seismic field. The
imaging principle introduced by Claerbout (1985) also states that neg-
ligible energy should be present in the seismic field at nonzero offset at
zero time (or at nonzero time for zero offset (Sava and Fomel,2005)),
provided that the migration velocity is at least kinematically correct.
That is, the zero-time offset image volumerh(x,z,h) = p(x,h,z,0)
should befocusedat h = 0, and failure to focus indicates need for a
velocity correction.

It has become customary to display the velocity diagnostic content of
the seismic field using so-called image gathers in the scattering angle
or offset ray parameter domains (Prucha et al., 1999; Rickett and Sava,
2002), Focusing in the offset domain is equivalent to flatness of image
gathers in the angle domain. In this report we will display exclusively
offset image gathers, i.e.rh(x,z,h) for fixed x.

Several authors have suggested automated methods for velocity inver-
sion (Toldi, 1989; Cao et al., 1990; Biondi and Sava, 2004). Most such
suggestions are based onoptimization of a quadratic form in the image
volume J(v) = 1

2‖Phrh‖
2, which is implicitly a function of the veloc-

ity (and the data). The symbol‖ · ‖ denotes the root mean square of
the quantity between the upright bars, over all of its dependent vari-
ables. The operatorPh is to be chosen so thatJ takes its extreme value
at correct velocity. Since the quadratic formJ is nonnegative, velocity
estimation is reduced to the optimization problemJ(vtrue) = minv J(v).

Use of efficient gradient-based optimization methods related to New-
ton’s method requires thatJ be smooth. As shown by Stolk and Symes
(2003), smoothness ofJ as function of velocity model and data traces
requires that the operatorPh be (pseudo)differential. A natural choice
of differential semblance(“DS”) operatorPh for wave equation mi-
gration is multiplication byh: since correct choice of velocity concen-
trates energy ath= 0, multiplying the offset image volume byh should
result in a very small mean square when the velocity is kinematically
correct. According to Stolk and Symes (2003),J with this choice of
Ph is regular as a function of velocity and data, hence amenableto
gradient-based optimization method. Shen et al. (2003) have demon-
strated a velocity analysis method using this choice of DS operator in
conjunction with shot-record migration.

Gradient Calculation
The gradient ofJ represents its derivative via the inner (dot, scalar)
product〈·, ·〉:

〈〈∇J(v),δv〉 =
〈

rh,h
2Dvrhδv

〉

=
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∗
h(h
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〉
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in which Dvrh denotes the Jacobian or derivative of the offset image
volume with respect to velocity, andDvr∗h its adjoint or transposed
operator. It follows that∇J = Dvr∗hh2rh.

The so-calledadjoint statealgorithm computesDvr∗h via anupward
marching scheme in depth, from maximal depth until the surface. We
write the propagation of the fieldp from depthzi−1 to depthzi = zi−1+
∆zas

pi = H(vi−1)pi−1

(vi−1 being the velocity in this depth layer). By implicit differentiation,
the perturbationδ pi at interfacei in the seismic field resulting from
velocity perturbationδvi−1 in layer i −1 and field perturbationδ pi−1
at interfacei−1 should satisfy

δ pi = DvH(vi−1)pi−1 δvi−1 +H(vi−1)δ pi−1
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Introducing the notationsH andDvHp for the matrces appearing in the
preceding equation, andδ p andδv for the vectors of field and velocity
perturbations, the matrix equation takes the compact form

δ p = Hδ p+DvHpδv

Thus
δ p= (I −H)−1DvHpδv

Denote byT the operator which samples the fieldp(...,t) at timet = 0
(if the depth extrapolation is carried out in the frequency domain, as is
commonly done, thenT represents summation over frequency). Then
rh = T p whenceDvrhδv = Tδ p = T(I −H)−1DvHδv whence∇J =
Dvr∗hP2

h rh = DvH∗((I −H)−1)∗T∗P2
h rh. The operatorT∗ is simply the

operator which inserts its argument (a spatial field) as thet −0 level of
an (otherwise zero) space-time field. SinceI −H is lower triangular,
(I−H)∗ is upper triangular, and we can write by inspection a recursion
for the solutionw of (I −H)w = T∗P2

h rh:

wi −H(vi)
∗wi+1 = (T∗P2

h rh)z=zi , i = 0, ...N wN+1 = 0 (4)

In terms of theadjoint state field w, the gradient ofJ may be expressed
as

∇Jz=zi = (DvH(vi+1)pi+1)
∗wi , i = 0, ...N

.

To summarize: the gradient computation consists of

• Downward propagation of the seismic wavefieldp until to
a maximum depthzmax, at each step reading offrh layer by
layer, then

• Upward propagation of the adjoint wavefieldw to the surface
and evaluation of the gradient per the preceding formula, at
each step of the upward propagation.

We emphasize that this computation isexact, i.e. produces the actual
gradient of the objectiveJ up to a machine precision error, and re-
quires roughly three times the floating point operations of adownward
propagation. On the other hand it requires the entire seismic wavefield
p to be stored, for all depth levels, as this field is accessed inorder
inverse to its computation in the adjoint state recursion (4). Griewank
(2000) discusses options for avoiding full storage ofp, which could be
onerous in 3D.

Smoothness and Bound Constraints
The theory of depth migration suggests that migration velocity models
should be smooth on the wavelength scale (an often ignored restric-
tion!). Therefore the model must be kept relatively smooth during the
optimization. Several schemes for model representation and regular-
ization satisfy this smoothing requirement. We chose to parametrize
the model on a regular grid which is coarse on the wavelength scale,

and interpolate the velocity samples to the (fine) regular grid of the
wave equation computation by cubic B-spline interpolation: v = Bm,
wherem is the vector of B-spline nodal parameters andB is the inter-
polation operator. We carry out optimization for these nodal parame-
ters directly using the gradient ofJ with respect tom:

∇mJ = B∗∇J.

Therefore the adjointB∗ of the B-spline interpolation operator is also
required.

For a variety of reasons, reasonable behaviour of the optimization re-
quires that all updates of the velocity model satisfy prescribed upper
and lower bounds. For example, the GSP remains accurate onlyif the
velocity remains above a specified reference velocity. We used com-
position of the velocity nodal parameters with a sigmoidal function
to assure that the prescribed bounds were maintained at all stages of
the iteration, even though our optimization algorithm (limited mem-
ory BFGS algorithm (“LBFGS”) (Nocedal and Wright, 1999) didnot
explicitly assure bound constraints.

EXAMPLES

We generated and processed several synthetic tests; we present the re-
sults of two such tests. Both are based on the Marmousi model and
used the same data geometry as the blind test data set (Versteeg and
Grau, 1991). We generated the test data using a time domain finite dif-
ference linearized (“Born modeling”) code. The synthetic source was
in all cases a point dilatation with trapezoidal bandpass filter (4-10-25-
35 Hz) zero phase time dependence. As was true of the originalMar-
mousi data, the top surface of the model was free (pressure-release),
hence generated a ghost which we ignored, even though the data so
acquired violated the theoretically necessary zero-phaseconstraint.

The first example modeled the perturbation of the data from a linear
background velocity (1.5 km/s at surface, 4.5 km/s at 3 km depth)
resulting from a short scale velocity perturbation obtained by subtract-
ing from the original model a smoothed version. To accomplish the
smoothing, we used the Seismic Unix utilitysmooth2 (Stockwell,
2001) with a smoothing length of 20 m. To represent trial velocities,
we used a grid of 6 points inx and 5 points inz.

Figure 1 shows migrated images (i.e.r(x,z) = rh(x,0,z) at the initial
velocity model and after 20 steps of LBFGS. The initial velocity was
approximately 30% too high in the near-surface part of the model, re-
sulting in severe mis-focusing and reflectors mapped considerably too
deep. The final velocity is sufficiently accurate that the image is almost
perfectly focused, and depths are essentially correct.

The second example in contrast combined a more complex background
velocity with a simpler reflectivity (velocity perturbation). The model
is the Marmousi velocity, smoothed usingsmooth2 on a length scale
of 200 m. The velocity perturbation consists of fourteen evenly spaced
flat horizontal reflectors. Since the model is more laterallyheteroge-
neous, we used a finer grid of ten nodes inx and 15 nodes inz. Fig-
ure 2(a) shows the layered initial velocity model, the inverted velocity
model after 30 iterations of LBFGS, and for comparison the “true”
smoothed Marmousi velocity model used to generate the data.In Fig-
ure 2(b) we show the result of the corresponding migrations.

While the velocity estimate (Figure 2(a), middle) shows clear evidence
of the fault block structure, which gives this model its kinematic com-
plexity, the migrated image (Figure 2(b), middle) does not reproduce
the flat structure of the target reflectivity. Perhaps the lack of data
near the edges is responsible for some of the sag at the ends, but the
reflector depths in the middle are also not correct.

To assess this result, we created a number of other displays.One of
these appears as Figure 2(c), which exhibits an offset-scaled, squared
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offset image gather from the middle of the model. The left plot shows
the image gather from migration with the initial velocity, and displays
the lack of focusing one would expect from a kinematically inaccurate
velocity. The middle gather is extracted from the migrationoutput at
the inverted velocity - the high-offset energy is essentially suppressed.
For comparison, we also show on the right the same gather produced
by migrating with the “true” velocity, which does not appearmore
focused than the middle figure. In fact the objectiveJ (the mean of all
such gathers) at the inverted velocity is actually slightlysmaller than
the value produced at the “true” velocity!

DISCUSSION

We draw two tentative conclusions from these results. First, the veloc-
ity estimation process described in this paper is has been implemented
successfully: the optimization succeeds in producing focused image
gathers, i.e. satisfies the diagnostic test for velocity correctness. Sec-
ond, velocity estimation involves a considerable degree ofnonunique-
ness (Stork and Clayton, 1991); therefore the results of an automatic
process like the one described here may be steered by noise, imaging
artifacts, or data errors to one or another of the many equivalent mod-
els, all equally consistent with the data at least in a kinematic sense.

A number of important preprocessing issues strongly affected the suc-
cess or failure of our tests with DS velocity inversion:

Tapering: The image volume can be severely affected by any sharp
cutoff, on any axis. This means that the data must be tapered over sev-
eral dominant wavelengths in time and all spatial axes. Suchtapering
can often be ignored in image production, as the artifacts sogenerated
tend to “stack out”, i.e. be small at zero offset. However edge artifacts
are coherent noise and can cause large errors in automated velocity
estimates.

Filtering and muting: Incoherent noise is generally harmless. How-
ever coherent high frequency artifacts can have a very largeeffect, as
can critical reflections and refractions, diving waves, andother often-
strong data components not predicted by specular reflectiontheory.

Proper choice of extrapolation step, reference velocity: The choice
of ∆z critically affects the quality of the gathers, as does the devia-
tion between reference and migration velocities. Proper selection of
∆z depends on the minimum of the migration velocity field; either the
velocity models allowed in the search must be constrained toshare
a common lower bound compatible with a fixed choice of∆z, or the
latter must be adjusted as the optimization proceeds. As adaptive grid-
ding enormously complicates the construction of reliable optimization
algorithms, we have used a fixed lower bound as a constraint onthe
velocity search space. Likewise the reference velocity must not stray
too far from the velocity update to maintain kinematic accuracy in the
GSP.
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Figure 2:
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(a) Velocity model updating: initial velocity (linear) on the left, updated velocity after 30 iterations of LBFGS in themiddle, true velocity on the right
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(b) Migration: migration at initial velocity on the left, migration at updated velocity in the middle, migration at truevelocity on the right
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(c) Display of|h.rh(x,z,h)|2 at positionx = 5.250km: at initial velocity on the left, updated velocity in the middle, at true velocity on the right


