Reverse Time Migration: Checkpointing and Scaling

William W. Symes

TRIP Annual Review, January 2007

Agenda

- RTM as adjoint state method
- Checkpointing
- Griewank's optimal schedule
- Implications for RTM
- Scaling as substitute for inversion How to make it work
- A practical filtering-scaling algorithm
- Example Marmousmooth

Discrete Time Evolution

Dynamical operator \mathbf{H}^n depends on control **c**, advances state \mathbf{u}^n one time step.

$$\mathbf{u}^{n+1} = \mathbf{H}^n[\mathbf{c}, \mathbf{u}^n], \ n = 0, 1, ..., N-1$$

Main example for this talk: constant density acoustic wave equation approximated by centered differences. Acoustic potential $u_{ijk}^n \simeq u(i\Delta x, j\Delta y, k\Delta z, n\Delta t)$, with velocity field $v_{ijk} \simeq v(i\Delta x, j\Delta y, k\Delta z)$, source $f_{ijk}^n \simeq ..., L$ = finite difference or element approximation to Laplacian:

$$\mathbf{u}^{n} = \begin{pmatrix} u^{n} \\ u^{n-1} \end{pmatrix}, \ \mathbf{c} = (v), \ \mathbf{H}^{n}[\mathbf{c}, \mathbf{u}^{n}] = \begin{pmatrix} 2u^{n} - u^{n-1} + \Delta t^{2}v^{2}Lu^{n} + \Delta t^{2}f^{n} \\ u^{n} \end{pmatrix}$$

Same ideas/formalism applies to other schemes (staggered grid, FEM,...), models (elasticity, viscoelasticity,...), seismic apps (WEMVA - Shen et al. SEG 03, Biondi-Sava 04, Soubaras 06), physics (EM, heat flow, weather system, ocean currents,...)

Objective or Cost Functions

 $\mathbf{u}[\mathbf{c}] = (\mathbf{u}^0, \mathbf{u}^1, ..., \mathbf{u}^N)^T \in U^N$ = state time series - implicitly function of \mathbf{c} .

 $\mathbf{S}: U^N \to E = sampling operator.$

For this talk: E = seismic traces (pressure $\partial u/\partial t$ sampled in space/time).

 $\mathbf{G}: E \to \mathbf{R} =$ "goodness" function, defines cost function $J: C \to \mathbf{R}$ via $J[\mathbf{c}] = \mathbf{G}[\mathbf{S}[\mathbf{u}[\mathbf{c}]]].$

Classic example leading to RTM: \mathbf{G} = mean square error function, i.e. $\mathbf{d} \in E$ = data, $\mathbf{G}[\mathbf{s}] = \frac{1}{2} \|\mathbf{d} - \mathbf{s}\|^2$.

Adjoint State Method

For computing the gradient of *J*:

- compute u[c] = (u⁰, ..., u^N)^T ("forward sweep"), initialize gradient accumulator g^N ∈ C and adjoint state w^{N+1} ∈ U to zero.
- For n = N 1, ...0 ("backwards sweep"),

$$\mathbf{w}^{n+1} = D_u \mathbf{H}^{n+1} [\mathbf{c}, \mathbf{u}^{n+1}]^T \mathbf{w}^{n+2} + [\mathbf{S}^T (\nabla \mathbf{G}) [\mathbf{S}[\mathbf{u}[\mathbf{c}]]]]^{n+1}$$
$$\mathbf{g}^n = \mathbf{g}^{n+1} + D_c \mathbf{H}^n [\mathbf{c}, \mathbf{u}^n]^T \mathbf{w}^{n+1}$$

• $\nabla J[\mathbf{c}] = \mathbf{g}^0.$

For acoustics, $\mathbf{w}^n = (w^n, w^{n+1})^T$, and $D_c \mathbf{H}^n[\mathbf{c}, \mathbf{u}^n]^T \mathbf{w}^{n+1} = 2\Delta t^2 v(Lu^n) w^{n+1}$ cross correlation of incident (*u*), backpropagated (*w*) fields, $\nabla J[\mathbf{c}] = \mathbf{g}^0 = \text{image.}$

Computational Complexity

Observation: u evolves *forward* in step index, w *backward* in step index, but they are needed at indices n, n + 1 respectively, n = N - 1, ...0.

Strategies for simultaneous access to \mathbf{u}^n , \mathbf{w}^{n+1} – in all cases \mathbf{w}^{n+1} evolved backwards from n = N to n = 0.

- 1. For each n, evolve \mathbf{u}^n from n = 0.
- 2. Compute $\mathbf{u}^0, ..., \mathbf{u}^N$, store all; For each *n* retrieve \mathbf{u}^n .
- 3. Compute $\mathbf{u}^0, \dots, \mathbf{u}^N$, store every kth state, k > 1; for each n, interpolate n state from closest stored states. Used in some commercial 2D RTM implementations.
- 4. Compute $\mathbf{u}^0, \dots \mathbf{u}^N$, evolve \mathbf{u}^n backwards in time from n = N. Possible for acoustic RTM, if enough boundary data stored to make up for ABC. Not available for attenuative modeling, reasonable Q.

Computational Complexity

Cost: units of simulation steps (flops) to compute u, number of state vectors stored:

- 1. working storage (1 state vector), $N^2/2$ steps prohibitive;
- 2. N steps, N state vectors;
- 3. also N steps, N/k state vectors, but loss of accuracy due to use of interpolation rather than evolution;
- 4. 2N steps, 1 state vector. For acoustic RTM with ABC add'1 storage equivalent to 10's of state vectors.

3D RTM: $N \simeq 10000$, state vector $\simeq 10^9$ W \Rightarrow (1) strategy 1 $\sim O(10^{38})$ flops, (2) strategy 2 $\sim O(20 - 40)$ TB, strategy 3 $\sim O(2 - 4)$ TB w/ k = 10.

There's a better way...

Checkpointing

Alternative to strategies 1-4. Requires allocation of

- N_B buffers, each storing one state vector;
- $N_C >> N_B$ checkpoints = integers between 0 and N.

Forward sweep (n=0,...,N): solve forward evolution problem to compute \mathbf{u}^0 , ..., \mathbf{u}^N ; store N_B checkpoints in the buffers, including the first (always n=0) and last.

Backwards sweep (n=N-1,...,0): begin by using strategy 1, *starting at the last checkpoint*. When the n = last checkpoint, re-use its buffer to store another checkpoint. computing its state by application of strategy 1 starting from the previous stored checkpoint. Continue using strategy 1, starting from next-to-last checkpoint [this must be the replacement for the last checkpoint, unless it was previously stored]. Continue. At end of algorithm, buffers store some number of states starting with n = 0; finish using strategy 2.

Checkpointing

Example with $N = 15, N_B = 3, N_C = 6$

Meaning of colums:

- bufk records checkpoint stored in buffer k;
- *recomp* records the previously computed steps which are *recomputed* in each step of the backwards sweep, or *dash* if no recomputation necessary in step;
- *bold faced* checkpoints used as Cauchy data for strategy 1;
- *italic*: n for which \mathbf{u}^n combined with \mathbf{w}^{n+1} in evaluation of gradient update.

During forward sweep checkpoints 0, 6, 11 recorded in buffers 1, 2, and 3.

step	buf1	buf2	buf3	recomp			
14	0	6	11	12,13,14			
13	0	6	11	12, 13			
12	0	6	11	12			
11	0	6	11	7, 8			
10	0	6	8	9, 10			
9	0	6	8	9			
8	0	6	8	-			
7	0	6	8	7			
6	0	6	8	-			
5	0	1	3	1, 2, 3, 4, 5			
4	0	1	3	4			
3	0	1	3	-			
2	0	1	3	2			
1	0	1	3	_			
0	0	1	3	-			

Griewank's Optimal Checkpoint Schedule

Big question: how do you choose checkpoints to

- minimize the amount of recomputation for given storage allocation (N_B) , or
- minimize the amount of storage required for a given level of recomputation.

Solution by Griewank, *Opt. Meth. and Software*, 1992, published as Alg. 799, Griewank and Walther, *ACM TOMS* 2000, in terms of *recomputation ratio* = total number of forward steps required to compute adjoint / N.

N = 10000

buffers	3	5	10	15	20	25	30	35	40	60
ratio	27.9	11.3	5.8	4.5	3.8	3.6	3.4	3.1	2.9	2.8

Implications for 3D RTM

N=10000, buffers for 36 state vectors \Rightarrow

- total cost of adjoint ≃ 3 times forward simulation + 1.5 times for adjoint step (wⁿ⁺¹ → wⁿ) ≃ 4.5 times sim cost.
- total storage required ≃ 150 GB (compare 2 TB for strat. 3, 20 TB for strat 2, both at 2.5 times sim cost).
- with optimal checkpointing *in-core* 3D RTM feasible now on *subclusters* (eg. 8GB 1 Gflop ⇒ several shots/day on 20 nodes)
- alternative store checkpoints to disk i/o cost reduced by 1-2 ord. of magnitude.
- store less reference state ⇒ either do less i/o or have more core available for working fields ⇒ fewer nodes needed, less message passing.
- multicore/stream FPUs (Cell, GPU, FPGA,...) \Rightarrow advantage: checkpointing

TRIP 2D RTM

- available to sponsors since 5/06.
- Features: (2,4) FD scheme, PML ABC's, minimal optimization, models in SEP77, data in SU/SEGY, RVL/TSOpt C++/MPI framework, incorporates Griewank-Walther checkpoint scheduling, F77 loops processed with TAMC (AD).
- no message passing, no disk i/o within time loop.
- Expl: derived from Marmousi, 240 shots, 3 s, 800x2500 (x, z) grid, ~ 8000 time steps, parallelized over shot. On 120 cores of Rice Cray XD-1, gcc4: Modeling = 20 min, RTM = 90 min.

Migration vs. Inversion

RTM produces *gradient* of least squares cost function: if data is d, and F is *forward map*

$$\mathbf{F}[\mathbf{c}] = \mathbf{S}[\mathbf{u}[\mathbf{c}]]$$

then

$$\nabla J[\mathbf{c}] = D\mathbf{F}[c]^T (d - \mathbf{F}[c])$$

RTM output ∇J is *image* under certain circumstances: if *Born approximation*

$$\mathbf{d} \simeq \mathbf{F}[\mathbf{c}_0] + D\mathbf{F}[\mathbf{c}_0]\delta\mathbf{c}$$

is accurate, and c_0 is known and "nonreflecting", then $\nabla J[c_0]$ is an image.

BUT it's not an inversion, i.e. generally $\nabla J[\mathbf{c}_0] \neq \delta \mathbf{c} \simeq (D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0])^{-1} \nabla J[\mathbf{c}_0].$

Example: Marmousmooth

Figure 1. Left: Marmousi velocity model smoothed with tapered 160 m radius moving average. Right: Velocity perturbation, difference of original Marmousi model and 40 m smoothing.

Example: Marmousmooth

Figure 2. Left: RTM of Born data created from model of Figure 1, source = 5-13-40-55 bandpass. Right: Velocity perturbation, displayed for comparison. Note discrepancy between shallow and deep amplitudes in image vs. model structure.

Scaling as Approximate Inversion

Claerbout-Nichols (SEP 82, 94): necessarily $(D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0])^{-1} \nabla J[\mathbf{c}_0] \simeq s \nabla J[\mathbf{c}_0]$ for spatially varying $s(\mathbf{x})$. Estimate s by solving a related least-squares problem, say

$$\nabla J[\mathbf{c}_0] \simeq s(D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0]) \nabla J[\mathbf{c}_0]$$

Both sides of above are computable (one additional Born modeling ("demigration") and migration).

Rickett (Geophys. 03) applied this idea to shot-profile migration.

However it won't work... unless $D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0]$ is approximately diagonal, i.e. multiplication by a function, which it is not! [Easy counterexamples!]

Guitton (*Geophys.* 04) replaces scale factor *s* by *spatially varying filter* - better results, but structure of this "filter" unclear - how many degrees of freedom?

How to make it work (1)

Structure Theorem for Born Modeling: (Beylkin, 85; Rakesh, 86; Nolan & Symes 97; Smit, tenKroode, & Verdel 98; Stolk 00) Generally,

$$D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0] \chi(\mathbf{x}) e^{i\omega\psi(\mathbf{x})} = \sigma(\mathbf{x}, \omega \nabla \psi(\mathbf{x})) \chi(\mathbf{x}) e^{i\omega\psi(\mathbf{x})} + O(|\omega|^{m-\beta})$$

where:

- χ smooth, vanishing outside ball of radius > 0, $\nabla \psi(\mathbf{x}) \neq 0$ if $\chi(\mathbf{x}) \neq 0$;
- $\sigma(\mathbf{x}, \mathbf{k}) \geq 0$ is homogeneous of degree m in \mathbf{k} ;
- $\beta > 0$.

Operators with this property (acting as a multiplier on localized monochromatic pulses) are *pseudodifferential* (" Ψ DO"). Order is m = d - 1 in space dimension d, σ is principal symbol.

How to make it work (2)

Key facts about operators:

Differential operators are Ψ DOs, but not all Ψ DOs are differential - for example, arbitrary real powers of Laplace op are Ψ DO.

 Ψ DOs form an *algebra*: sums and products are Ψ DOs. Product commutes modulo lower order ops: principal symbol of product is product of principal symbols.

 $\Rightarrow (-\nabla^2)^{-\frac{m}{2}} D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0] \text{ is an operator of order } \mathbf{0}.$

Operators of order zero act as *frequency independent* multipliers on monochromatic pulses:

$$(-\nabla^2)^{-\frac{m}{2}} D\mathbf{F}[\mathbf{c}_0]^T D\mathbf{F}[\mathbf{c}_0] \chi(\mathbf{x}) e^{i\omega\psi(\mathbf{x})} = \bar{\sigma}(\mathbf{x})\chi(\mathbf{x}) e^{i\omega\psi(\mathbf{x})} + O(|\omega|^{-\beta})$$

where $\bar{\sigma}(\mathbf{x}) = \|\nabla\psi(\mathbf{x})\|^{-m} \sigma(\mathbf{x}, \nabla\psi(\mathbf{x})).$

How to make it work (3)

Key fact about images:

Seismic images (migration outputs), and presumably the models to which they correspond, tend to have well-defined dip in most places, i.e. to be local Fourier sums of monochromatic pulses. So: in most places,

- migrating data, then filtering the migration output by $(-\nabla^2)^{-\frac{m}{2}}$ gives (approx.) δv multiplied by $\bar{\sigma}$;
- remodeling the data (applying $D\mathbf{F}[\mathbf{c}_0]$ to the migration output), then remigrating this remodeled data, then filtering, gives migrated image multiplied by same $\bar{\sigma}$.

Use second relation to estimate $\bar{\sigma}$, then first to estimate δv (divide by $\bar{\sigma}$): turns a migration into an inversion. Same idea as Claerbout-Nichols 94 and Rickett 03, but with additional filtering step; similar to Guitton 04, but operator structure fully specified.

A Practical Filtering-Scaling Algorithm

- 1. perform prestack migration $\mathbf{d} \mapsto D\mathbf{F}[\mathbf{c}_0]^T \mathbf{d} \equiv \mathbf{c}_{\text{mig}};$
- 2. resimulate the data: $\mathbf{c}_{\text{mig}} \mapsto D\mathbf{F}[\mathbf{c}_0]\mathbf{c}_{\text{mig}} \equiv \mathbf{d}_{\text{resim}};$
- 3. remigrate the resimulated data: $\mathbf{d}_{\text{resim}} \mapsto D\mathbf{F}[\mathbf{c}_0]^T \mathbf{d}_{\text{resim}} \equiv \mathbf{c}_{\text{remig}};$
- 4. Apply the Laplace filter: $\mathbf{c}_{\text{remig}} \mapsto L^{-\frac{m}{2}} \mathbf{c}_{\text{remig}} \equiv \mathbf{c}_{\text{filt}}$ (here -L is an approximation to the Laplace op);
- 5. Find a nonnegative scale factor \mathbf{W}^2 for which $\mathbf{W}^2 \mathbf{c}_{\text{filt}} \simeq \mathbf{c}_{\text{mig}}$ ($\mathbf{W}^2 = \text{pseudoin-verse op to multiplication by } \bar{\sigma}$);
- 6. Compute the approximate inverse $\mathbf{c}_{\text{est}} = \mathbf{W}^2 L^{-\frac{m}{2}} \mathbf{c}_{\text{mig}}$.

[For comparison: Claerbout-Nichols-Rickett alg is *same*, except leave out the filtering steps.]

Example: Marmousmooth again

Details of implementation:

1. Used TRIP 2D RTM package, which includes Born modeling.

2. Laplace filter $(-\nabla)^{-\frac{1}{2}}$ implemented via 2D FFT.

3. Determine \mathbf{W}^2 = multiplication by $\bar{\sigma}^{\dagger}$ by solving nonlinear least squares problem for $\tau = \log(\bar{\sigma}^{\dagger})$ - simple device to ensure that computed \mathbf{W}^2 is positive definite. Used RVL/Alg implementation of LBFGS.

4. To avoid migration aperture edge artifacts, focussed on central region of model via tapered spatial mute ("cutoff function").

Velocity Pert. vs. Scaling-Filtering Inversion

Figure 3. Left: Velocity perturbation, difference of original Marmousi model and 40 m smoothing. Right: Approximate inversion from Scaling-Filtering Algorithm.

Velocity Pert. vs. Scaling Only

Figure 4. Left: Velocity perturbation, difference of original Marmousi model and 40 m smoothing. Right: Approximate inversion from Scaling-Filtering Algorithm.

Resimulations: Exact vs. Scaling-Filtering

Figure 5. Shot at sx=7500m. Left: Born simulation with exact model, truncated by spatial mute. Right: Born resimulation using scaling-filtering approximate inversion.

Resimulations: Exact vs. Scaling Only

Figure 6. Left: Born simulation with exact model, truncated by spatial mute. Right: Born resimulation using scaling-filtering approximate inversion.

The Smoking Gun: Spectral Comparison

Figure 7. Spectra of simulations for sx=7500m, stacked. Black = true model (truncated by spatial mute), Blue = Scaling-Filtering approx. inversion, Red = Scaling-only approx. inversion. Note missing linear-in-frequency trend in scaling-only result - equivalent to missing division by |k|.

Conclusions

- Griewank's optimal checkpointing algorithm dramatically reduces storage required for RTM (by over an order of magnitude) - enabling technology .
- 3D RTM should be possible in-core on modest clusters. 2D RTM requires no intraloop i/o. Checkpointing advantage will increase if flops beat memory (Cell, GPUs,...).
- Approximation of Born inversion by RTM plus scaling requires additional filtering step - cost is extra modeling/migration loop (cost of scale factor estimation is insignificant).
- Scaling-filtering approximate inversion promising as preconditioner for iterative Born inversion using Krylov-type iteration (CG and relatives).
- Theory, practice both require nonreflecting background velocities . Coherent approach to general imaging problems (eg. salt boundary location) appears to require nonlinear inversion.