Reverse Time Migration: Checkpointing
and Scaling

William W. Symes

TRIP Annual Review, January 2007

Agenda

e RTM as adjoint state method

e Checkpointing

e Griewank’s optimal schedule

e Implications for RTM

e Scaling as substitute for inversion - How to make it work
e A practical filtering-scaling algorithm

e Example - Marmousmooth

Discrete Time Evolution

Dynamical operatoiHH” depends orontrol c, advancestateu” one time step.
u't =H"c,u"],n=0,1,..,N -1

Main example for this talk: constant density acoustic waygagion approximated
by centered differences. Acoustic potentid, ~ u(iAz, jAy, kAz, nAt), with
velocity field v, ~ v(iAz, jAy, kAz), sourcefl, ~ ..., L = finite difference or
element approximation to Laplacian:
n n ___ ,n—l1 2,,2 n 2 rn
u”:(u),c:(v),H”[c,u”]:<2u u +AtnvLu + At° f)

ikt U

Same ideas/formalism applies to other schemes (staggaced-&M,...), models
(elasticity, viscoelasticity,...), seismic apps (WEMVARen et al. SEG 03, Biondi-
Sava 04, Soubaras 06), physics (EM, heat flow, weather systaan currents,...)

2

Objective or Cost Functions

ulc] = (u’,ut, ..., u’)! € UV = state time series - implicitly function ef
S : UY — E =sampling operatar
For this talk: £ = seismic traces (pressube /0t sampled in space/time).

G : F — R =*“goodness” function definescostfunctionJ : C' — R via Jlc| =
G|[S[ulc]]].

Classic example leading to RTMx = mean square error function, i.e. € £ =
data,G[s] = 1|d — s||.

Adjoint State Method

For computing the gradient of:

e computeulc| = (u’,,u’")? (“forward sweep”), initializegradient accumula-
tor g € C andadjoint statew”*! € U to zero.

e Forn = N —1,...0 ("backwards sweep”),

Wn+1 _ Dan+1[C, un+1]TWn+2_|_ [ST<VG)[S[U.[CHH”+1
gn _ gn—H —|—D0Hn[c, un]TWn—l—l

e VJc] =g

For acousticsw” = (w",w" ™!, and D.H"[c, u"]! w"™! = 2At?v(Lu™)w" ! -
cross correlation of incident:f, backpropagated.() fields,V J[c| = g’ = image.

4

Computational Complexity

Observation:u evolvesforward in step indexw backwardin step index, but they
are needed at indicesn + 1 respectivelyn = N — 1, ...0.

Strategies for simultaneous accessufow”™ — in all casesw”""! evolved back-
wards fromn = N ton = 0.

1. For eacn, evolveu” fromn = 0.
2. Computead’, ..., u", store all; For each retrieveu”.

3. Computeu’,u", store everykth state,t > 1; for eachn, interpolaten state
from closest stored statedsed in some commercial 2D RTM implementations.

4. Computeu’, ...u”, evolveu” backwards in time froom = N. Possible for
acoustic RTM, if enough boundary data stored to make up fo€ ABot avail-
able for attenuative modeling, reasonable Q.

Computational Complexity

Cost: units of simulation steps (flops) to computeaumber of state vectors stored:

1. working storage (1 state vectofy?/2 steps - prohibitive;
2. N steps,V state vectors;

3. alsoN steps,V/k state vectors, but loss of accuracy due to use of interpolati
rather than evolution;

4.2N steps, 1 state vectdror acoustic RTM with ABC - add’l storage equivalent
to 10’s of state vectors.

3D RTM: N ~ 10000, state vector~ 10° W = (1) strategy I~ O(10°°) flops, (2)
strategy 2~ O(20 — 40) TB, strategy 3~ O(2 — 4) TB w/ k = 10.

There’s a better way...

Checkpointing
Alternative to strategies 1-4. Requires allocation of

e Ny buffers, each storing one state vector;
e No >> Np checkpoints = integers betweemnd V.

Forward sweep (n=0,...,N): solve forward evolution prabte computai’, ..., u";
store Nz checkpoints in the buffers, including the first (always nafgl last.

Backwards sweep (n=N-1,...,0): begin by using strategyakting at the last check-
point When then = last checkpoint, re-use its buffer to store another chackp

computing its state by application of strategy 1 startiranfrthe previous stored
checkpoint. Continue using strategy 1, starting from rieXtst checkpoint [this
must be the replacement for the last checkpoint, unlessstpraviously stored].
Continue. At end of algorithm, buffers store some numberntaties starting with

n = 0; finish using strategy 2.

Checkpointing

Example withN = 15, Ng =3, No =6

Meaning of colums:

e bufk records checkpoint stored in buffer k;

e recomprecords the previously computed steps which ra@mputedn each
step of the backwards sweep,dashif no recomputation necessary in step;

¢ bold facedcheckpoints used as Cauchy data for strategy 1,

e italic: n for whichu” combined withw” ! in evaluation of gradient update.

During forward sweep checkpoints 0, 6, 11 recorded in bsffei2, and 3.

step| bufl|buf2| buf3| recomp
14| O 6 | 11 | 12,1314
13| O 6 | 11 12,13
12| 0 6 | 11 12
11| O 6 | 11 7,8
10| O 6 | 8 9,10
9 | O 6 | 8 9

8 | O 6 | 8 -
710 6 | 8 7

6 | O 6 | 8 -

51 0 1 | 3 (1,2,3,45
4 |1 0 1 3 4

3| 0 1 3 -

2 | O 1 | 3 2

1| 0 1 3 -

O] O 1 3 -

Griewank’s Optimal Checkpoint Schedule

Big question: how do you choose checkpoints to
e minimize the amount of recomputation for given storagecatmn (Vg), or
e minimize the amount of storage required for a given levekeabmputation.

Solution by GriewankOpt. Meth. and Softwarel992, published as Alg. 799,
Griewank and Walthe ACM TOMS2000, in terms ofecomputation ratio= total
number of forward steps required to compute adjoint /

N = 10000

buffersf 3 | 5 [10/15]20|25|30|35|40|60
ratio |27.9/11.3/5.8/4.5/3.8/3.6/3.4/3.1/2.9|2.8

10

Implications for 3D RTM

N = 10000, buffers for 36 state vectors

e total cost of adjoint~ 3 times forward simulation + 1.5 times for adjoint step
(w'tl — w") ~ 4.5 times sim cost.

e total storage required 150 GB (compare 2 TB for strat. 3, 20 TB for strat 2,
both at 2.5 times sim cost).

e With optimal checkpointingn-core 3D RTM feasiblenow on subclustergeg.
8GB - 1 Gflop=- several shots/day on 20 nodes)

e alternative - store checkpoints to disk - i/o cost reducetl-8yord. of magnitude.

e store less reference state either do less i/o or have more core available for
working fields=- fewer nodes needed, less message passing.

e multicore/stream FPUs (Cell, GPU, FPGA,=)advantage: checkpointing

11

TRIP 2D RTM

e available to sponsors since 5/06.

e Features: (2,4) FD scheme, PML ABC'’s, minimal optimizatimodels in SEP77,
data in SU/SEGY, RVL/TSOpt C++/MPI framework, incorposai@riewank-
Walther checkpoint scheduling, F77 loops processed withlTAAD).

e N0 message passingp disk i/o within time loop.

e Expl: derived from Marmousi, 240 shots, 3 s, 800x2%00:) grid, ~ 8000 time
steps, parallelized over shot. On 120 cores of Rice Cray Xgcd4: Modeling
=20 min, RTM = 90 min.

12

Migration vs. Inversion

RTM producegradientof least squares cost function: if datalisandF is forward
map

then
VJc] = DF[c]* (d — Fc])
RTM outputVJ isimageunder certain circumstances:Bbrn approximation
d ~ F[cy| + DF|cy|oc

IS accurate, and, is known and “nonreflecting”, theW J|c,| is an image.

BUT it's not an inversion, i.e. generally J[cy| # dc ~ (DF[cy]! DF[c]) "1V J[cy).

13

Example: Marmousmooth

horizontal location (km) horizontal location (km)
0 2 4 6 8 0 2 4 6 8

)
)

€15

depth (ki
0] (63} N w N =
km/s
depth (ki

1.5
1.0
0.5

-0.5

-1.0
15
o 20

km/s

Figure 1. Left: Marmousi velocity model smoothed with tageel 60 m radius
moving average. Right: Velocity perturbation, differemmderiginal Marmousi

model and 40 m smoothing.

14

Example: Marmousmooth

horizontal location (km)

depth (km)
depth (km)

Figure 2. Left: RTM of Born data created from model of Figuresdurce =

horizontal location (km)

8

15
1.0
0.5

-0.5
-1.0
-1.5

-2.0

km/s

5-13-40-55 bandpass. Right: Velocity perturbation, digpt for comparison.
Note discrepancy between shallow and deep amplitudes igams model

structure.

15

Scaling as Approximate Inversion

Claerbout-Nichols (SEP 82, 94): necessatibF[cy|! DF|[cy|) "tV J[cy] ~ sV J[cy)
for spatially varyings(x). Estimates by solving a related least-squares problem,
say

VJlco] ~ s(DF|cyl! DF[co|)V J]c]

Both sides of above are computable (one additional Born imag€demigration™)
and migration).

Rickett (Geophys03) applied this idea to shot-profile migration.

However it won't work... unlesDF|[cy|! DF[c,] is approximately diagonal, i.e.
multiplication by a function, which it is not! [Easy coungsamples!]

Guitton (Geophys.04) replaces scale facterby spatially varying filter- better
results, but structure of this “filter” unclear - how many deep of freedom?

16

How to make it work (1)

Structure Theorem for Born ModelingBeylkin, 85; Rakesh, 86; Nolan & Symes
97; Smit, tenKroode, & Verdel 98; Stolk 00)

DF[eo]" DF [eqx (x)e™"™ = o (x, w Vi (x))x (x)e" ™ + O(|w|")

where:

e Y smooth, vanishing outside ball of radius0, Vi (x) # 0 if y(x) # 0;
e 0(x,k) > 0is homogeneous of degreein k;
o 5> 0.

Operators with this property (acting as a multiplier on lasal monochromatic
pulses) argseudodifferential* YDQO”). Orderism = d — 1 in space dimensiod,
o Is principal symbol

17

How to make it work (2)

Differential operators ar&DOs, but not allDOs are differential - for example,
arbitrary real powers of Laplace op ar®O.

UDOs form analgebra sums and products aeDOs. Product commutes modulo
lower order ops: principal symbol of product is product ahpipal symbols.

= (—V?)~2 DF|co]T DFc,] is an operator of order 0.

Operators of order zero actfisquency independentultipliers on monochromatic
pulses:

(=V*)"7 DF[eo] " DF[eg]x (x)e™™ = o (x)x(x)e"™ + O(|w|)
whereg(x) = [Vy(x)["o (x, Vib(x)).

18

How to make it work (3)

Seismic images (migration outputs), and presumably theatsdd which they cor-
respond, tend to haweell-defined dipin most places, i.e. to be local Fourier sums
of monochromatic pulses. So: in most places,

e migrating datathen filteringthe migration output by—V?)~2 gives (approx.)
ov multiplied by ;

e remodeling the data (applyin@F |c,] to the migration output), then remigrating
this remodeled datahen filtering gives migrated image multiplied yames.

Use second relation to estimate then first to estimatév (divide by s): turns a
migration into an inversion. Same idea as Claerbout-Ng®dl and Rickett 03,
but with additional filtering step; similar to Guitton 04,taperator structure fully
specified.

19

A Practical Filtering-Scaling Algorithm

perform prestack migratioh — DF[co]/d = cy;
resimulate the dat&;,i; — DF|co|cimiz = dresim;
remigrate the resimulated dathg,, — DF|[co)’ dresim = Cremig;

Apply the Laplace filterc,emis — L—%cremig = cq; (here—L Is an approxima-
tion to the Laplace op);

5. Find a nonnegative scale factdf* for which Wcg; ~ ¢, (W* = pseudoin-
verse op to multiplication by);

W N

6. Compute the approximate invergg = WQL—%cmig.

[For comparison: Claerbout-Nichols-Rickett algsame except leave out the fil-
tering steps.]

20

Example: Marmousmooth again

Details of implementation:

1. Used TRIP 2D RTM package, which includes Born modeling.

2. Laplace fiIter(—V)—% implemented via 2D FFT.

3. DeterminéW? = multiplication bya' by solving nonlinear least squares problem
for 7 = log(a') - simple device to ensure that compuféé is positive definite.

Used RVL/Alg implementation of LBFGS.

4. To avoid migration aperture edge artifacts, focussedemtral region of model
via tapered spatial mute (“cutoff function™).

21

Velocity Pert. vs. Scaling-Filtering Inversion

horizontal location (km) horizontal location (km)
6 8 2 4 6 8 10

Figure 3. Left: Velocity perturbation, difference of omgil Marmousi model and
40 m smoothing. Right: Approximate inversion from Scallgering Algorithm.

22

Velocity Pert. vs. Scaling Only

horizontal location (km) horizontal location (km)
6 8

depth (km)

Figure 4. Left: Velocity perturbation, difference of omgil Marmousi model and
40 m smoothing. Right: Approximate inversion from Scallgering Algorithm.

23

Resimulations: Exact vs. Scaling-Filtering

offset (km)
-1.5 -1.0

-2.0

-0.5

offset (km)
-1.5 -1.0

-2.0

-0.5

Figure 5. Shot at sx=7500m. Left: Born simulation with exactdel, truncated by
spatial mute. Right: Born resimulation using scaling-fihg approximate
inversion.

24

Resimulations: Exact vs. Scaling Only

offset (km)
-2.0 -1.5 -1

.0

-0.5

offset (km)
-2.0 -1.5 -1

.0

-0.5

Figure 6. Left: Born simulation with exact model, truncabgdspatial mute.
Right: Born resimulation using scaling-filtering approxta inversion.

25

The Smoking Gun: Spectral Comparison

power

o

frequency (Hz)
N
?

IN
0

60

Figure 7. Spectra of simulations for sx=7500m, stackedclBtatrue model
(truncated by spatial mute), Blue = Scaling-Filtering appnnversion, Red =
Scaling-only approx. inversion. Note missiiigear-in-frequencyrend in

scaling-only result - equivalent to missing division |&y.

26

Conclusions

e Griewank’s optimal checkpointing algorithm dramaticatBduces storage re-
quired for RTM (by over an order of magnitudeg¢rabling technology

e 3D RTM should be possibla-core on modest clusters. 2D RTM requires no
Intraloop i/0. Checkpointing advantage wilcreasaf flops beat memory (Cell,
GPUs,...).

e Approximation of Born inversion by RTM plus scaling requ@dditionafilter-
INng step - cost is extra modeling/migration loop (cost of scat#dr estimation
IS Insignificant).

e Scaling-filtering approximate inversion promisingmsconditionefor iterative
Born inversion using Krylov-type iteration (CG and relasy.

e Theory, practice both requireonreflecting background velocities Coherent
approach to general imaging problems (eg. salt boundagtitog appears to
require nonlinear inversion.

27

