
Reverse Time Migration: Checkpointing
and Scaling

William W. Symes

TRIP Annual Review, January 2007

Agenda

• RTM as adjoint state method

• Checkpointing

• Griewank’s optimal schedule

• Implications for RTM

• Scaling as substitute for inversion - How to make it work

• A practical filtering-scaling algorithm

• Example - Marmousmooth

1

Discrete Time Evolution

Dynamical operatorHn depends oncontrolc, advancesstateun one time step.

un+1 = Hn[c,un], n = 0, 1, ..., N − 1

Main example for this talk: constant density acoustic wave equation approximated
by centered differences. Acoustic potentialunijk ' u(i∆x, j∆y, k∆z, n∆t), with
velocity fieldvijk ' v(i∆x, j∆y, k∆z), sourcefnijk ' ..., L = finite difference or
element approximation to Laplacian:

un =

(

un

un−1

)

, c = (v), Hn[c,un] =

(

2un − un−1 + ∆t2v2Lun + ∆t2fn

un

)

Same ideas/formalism applies to other schemes (staggered grid, FEM,...), models
(elasticity, viscoelasticity,...), seismic apps (WEMVA -Shen et al. SEG 03, Biondi-
Sava 04, Soubaras 06), physics (EM, heat flow, weather system, ocean currents,...)

2

Objective or Cost Functions

u[c] = (u0,u1, ...,uN)T ∈ UN = state time series - implicitly function ofc.

S : UN → E = sampling operator.

For this talk:E = seismic traces (pressure∂u/∂t sampled in space/time).

G : E → R = “goodness” function, definescostfunctionJ : C → R via J [c] =

G[S[u[c]]].

Classic example leading to RTM:G = mean square error function, i.e.d ∈ E =
data,G[s] = 1

2
‖d − s‖2.

3

Adjoint State Method

For computing the gradient ofJ :

• computeu[c] = (u0,,uN)T (“forward sweep”), initializegradient accumula-
tor gN ∈ C andadjoint statewN+1 ∈ U to zero.

• Forn = N − 1, ...0 (“backwards sweep”),

wn+1 = DuH
n+1[c,un+1]Twn+2 + [ST (∇G)[S[u[c]]]]n+1

gn = gn+1 +DcH
n[c,un]Twn+1

• ∇J [c] = g0.

For acoustics,wn = (wn, wn+1)T , andDcH
n[c,un]Twn+1 = 2∆t2v(Lun)wn+1 -

cross correlation of incident (u), backpropagated (w) fields,∇J [c] = g0 = image.

4

Computational Complexity

Observation:u evolvesforward in step index,w backwardin step index, but they
are needed at indicesn, n + 1 respectively,n = N − 1, ...0.

Strategies for simultaneous access toun,wn+1 – in all caseswn+1 evolved back-
wards fromn = N to n = 0.

1. For eachn, evolveun from n = 0.

2. Computeu0, ...,uN , store all; For eachn retrieveun.

3. Computeu0,uN , store everykth state,k > 1; for eachn, interpolaten state
from closest stored states.Used in some commercial 2D RTM implementations.

4. Computeu0, ...uN , evolveun backwards in time fromn = N . Possible for
acoustic RTM, if enough boundary data stored to make up for ABC. Not avail-
able for attenuative modeling, reasonable Q.

5

Computational Complexity

Cost: units of simulation steps (flops) to computeu, number of state vectors stored:

1. working storage (1 state vector),N 2/2 steps - prohibitive;

2.N steps,N state vectors;

3. alsoN steps,N/k state vectors, but loss of accuracy due to use of interpolation
rather than evolution;

4. 2N steps, 1 state vector.For acoustic RTM with ABC - add’l storage equivalent
to 10’s of state vectors.

3D RTM:N ' 10000, state vector' 109 W ⇒ (1) strategy 1∼ O(1038) flops, (2)
strategy 2∼ O(20 − 40) TB, strategy 3∼ O(2 − 4) TB w/ k = 10.

There’s a better way...

6

Checkpointing

Alternative to strategies 1-4. Requires allocation of

• NB buffers, each storing one state vector;

• NC >> NB checkpoints = integers between0 andN .

Forward sweep (n=0,...,N): solve forward evolution problem to computeu0, ...,uN ;
storeNB checkpoints in the buffers, including the first (always n=0)and last.

Backwards sweep (n=N-1,...,0): begin by using strategy 1,starting at the last check-
point. When then = last checkpoint, re-use its buffer to store another checkpoint.
computing its state by application of strategy 1 starting from the previous stored
checkpoint. Continue using strategy 1, starting from next-to-last checkpoint [this
must be the replacement for the last checkpoint, unless it was previously stored].
Continue. At end of algorithm, buffers store some number of states starting with
n = 0; finish using strategy 2.

7

Checkpointing

Example withN = 15, NB = 3, NC = 6

Meaning of colums:

• bufk records checkpoint stored in buffer k;

• recomprecords the previously computed steps which arerecomputedin each
step of the backwards sweep, ordashif no recomputation necessary in step;

• bold facedcheckpoints used as Cauchy data for strategy 1;

• italic: n for whichun combined withwn+1 in evaluation of gradient update.

During forward sweep checkpoints 0, 6, 11 recorded in buffers 1, 2, and 3.

8

step buf1 buf2 buf3 recomp
14 0 6 11 12,13,14
13 0 6 11 12,13
12 0 6 11 12
11 0 6 11 7, 8
10 0 6 8 9, 10
9 0 6 8 9
8 0 6 8 -
7 0 6 8 7
6 0 6 8 -
5 0 1 3 1, 2, 3, 4,5
4 0 1 3 4
3 0 1 3 -
2 0 1 3 2
1 0 1 3 -
0 0 1 3 -

9

Griewank’s Optimal Checkpoint Schedule

Big question: how do you choose checkpoints to

• minimize the amount of recomputation for given storage allocation (NB), or

• minimize the amount of storage required for a given level of recomputation.

Solution by Griewank,Opt. Meth. and Software, 1992, published as Alg. 799,
Griewank and Walther,ACM TOMS2000, in terms ofrecomputation ratio= total
number of forward steps required to compute adjoint /N .

N = 10000

buffers 3 5 10 15 20 25 30 35 40 60
ratio 27.9 11.3 5.8 4.5 3.8 3.6 3.4 3.1 2.9 2.8

10

Implications for 3D RTM

N = 10000, buffers for 36 state vectors⇒

• total cost of adjoint' 3 times forward simulation + 1.5 times for adjoint step
(wn+1 7→ wn) ' 4.5 times sim cost.

• total storage required' 150 GB (compare 2 TB for strat. 3, 20 TB for strat 2,
both at 2.5 times sim cost).

• with optimal checkpointingin-core 3D RTM feasiblenow on subclusters(eg.
8GB - 1 Gflop⇒ several shots/day on 20 nodes)

• alternative - store checkpoints to disk - i/o cost reduced by1-2 ord. of magnitude.

• store less reference state⇒ either do less i/o or have more core available for
working fields⇒ fewer nodes needed, less message passing.

• multicore/stream FPUs (Cell, GPU, FPGA,...)⇒ advantage: checkpointing

11

TRIP 2D RTM

• available to sponsors since 5/06.

• Features: (2,4) FD scheme, PML ABC’s, minimal optimization, models in SEP77,
data in SU/SEGY, RVL/TSOpt C++/MPI framework, incorporates Griewank-
Walther checkpoint scheduling, F77 loops processed with TAMC (AD).

• nomessage passing,nodisk i/o within time loop.

• Expl: derived from Marmousi, 240 shots, 3 s, 800x2500(x, z) grid,∼ 8000 time
steps, parallelized over shot. On 120 cores of Rice Cray XD-1, gcc4: Modeling
= 20 min, RTM = 90 min.

12

Migration vs. Inversion

RTM producesgradientof least squares cost function: if data isd, andF is forward
map

F[c] = S[u[c]]

then

∇J [c] = DF[c]T (d− F[c])

RTM output∇J is imageunder certain circumstances: ifBorn approximation

d ' F[c0] +DF[c0]δc

is accurate, andc0 is known and “nonreflecting”, then∇J [c0] is an image.

BUT it’s not an inversion, i.e. generally∇J [c0] 6= δc ' (DF[c0]
TDF[c0])

−1∇J [c0].

13

Example: Marmousmooth

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

0 2 4 6 8
horizontal location (km)

1

2

3

4

5

6

km
/s

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

0 2 4 6 8
horizontal location (km)

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

km
/s

Figure 1. Left: Marmousi velocity model smoothed with tapered 160 m radius
moving average. Right: Velocity perturbation, differenceof original Marmousi

model and 40 m smoothing.

14

Example: Marmousmooth
0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

0 2 4 6 8
horizontal location (km)

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

0 2 4 6 8
horizontal location (km)

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

km
/s

Figure 2. Left: RTM of Born data created from model of Figure 1, source =
5-13-40-55 bandpass. Right: Velocity perturbation, displayed for comparison.
Note discrepancy between shallow and deep amplitudes in image vs. model

structure.

15

Scaling as Approximate Inversion

Claerbout-Nichols (SEP 82, 94): necessarily(DF[c0]
TDF[c0])

−1∇J [c0] ' s∇J [c0]
for spatially varyings(x). Estimates by solving a related least-squares problem,
say

∇J [c0] ' s(DF[c0]
TDF[c0])∇J [c0]

Both sides of above are computable (one additional Born modeling (“demigration”)
and migration).

Rickett (Geophys.03) applied this idea to shot-profile migration.

However it won’t work... unlessDF[c0]
TDF[c0] is approximately diagonal, i.e.

multiplication by a function, which it is not! [Easy counterexamples!]

Guitton (Geophys.04) replaces scale factors by spatially varying filter- better
results, but structure of this “filter” unclear - how many degrees of freedom?

16

How to make it work (1)

Structure Theorem for Born Modeling:(Beylkin, 85; Rakesh, 86; Nolan & Symes
97; Smit, tenKroode, & Verdel 98; Stolk 00)Generally,

DF[c0]
TDF[c0]χ(x)eiωψ(x) = σ(x, ω∇ψ(x))χ(x)eiωψ(x) +O(|ω|m−β)

where:

• χ smooth, vanishing outside ball of radius> 0, ∇ψ(x) 6= 0 if χ(x) 6= 0;

• σ(x,k) ≥ 0 is homogeneous of degreem in k;

• β > 0.

Operators with this property (acting as a multiplier on localized monochromatic
pulses) arepseudodifferential(“ΨDO”). Order ism = d− 1 in space dimensiond,
σ is principal symbol.

17

How to make it work (2)

Key facts about operators:

Differential operators areΨDOs, but not allΨDOs are differential - for example,
arbitrary real powers of Laplace op areΨDO.

ΨDOs form analgebra: sums and products areΨDOs. Product commutes modulo
lower order ops: principal symbol of product is product of principal symbols.

⇒ (−∇2)−
m
2DF[c0]

TDF[c0] is an operator of order 0.

Operators of order zero act asfrequency independentmultipliers on monochromatic
pulses:

(−∇2)−
m
2DF[c0]

TDF[c0]χ(x)eiωψ(x) = σ̄(x)χ(x)eiωψ(x) + O(|ω|−β)

whereσ̄(x) = ‖∇ψ(x)‖−mσ(x,∇ψ(x)).

18

How to make it work (3)

Key fact about images:

Seismic images (migration outputs), and presumably the models to which they cor-
respond, tend to havewell-defined dipin most places, i.e. to be local Fourier sums
of monochromatic pulses. So: in most places,

• migrating data,then filteringthe migration output by(−∇2)−
m
2 gives (approx.)

δv multiplied by σ̄;

• remodeling the data (applyingDF[c0] to the migration output), then remigrating
this remodeled data,then filtering, gives migrated image multiplied bysameσ̄.

Use second relation to estimateσ̄, then first to estimateδv (divide by σ̄): turns a
migration into an inversion. Same idea as Claerbout-Nichols 94 and Rickett 03,
but with additional filtering step; similar to Guitton 04, but operator structure fully
specified.

19

A Practical Filtering-Scaling Algorithm

1. perform prestack migrationd 7→ DF[c0]
Td ≡ cmig;

2. resimulate the data:cmig 7→ DF[c0]cmig ≡ dresim;

3. remigrate the resimulated data:dresim 7→ DF[c0]
Tdresim ≡ cremig;

4. Apply the Laplace filter:cremig 7→ L−m
2 cremig ≡ cfilt (here−L is an approxima-

tion to the Laplace op);

5. Find a nonnegative scale factorW2 for whichW2cfilt ' cmig (W2 = pseudoin-
verse op to multiplication bȳσ);

6. Compute the approximate inversecest = W2L−m
2 cmig.

[For comparison: Claerbout-Nichols-Rickett alg issame, except leave out the fil-
tering steps.]

20

Example: Marmousmooth again

Details of implementation:

1. Used TRIP 2D RTM package, which includes Born modeling.

2. Laplace filter(−∇)−
1
2 implemented via 2D FFT.

3. DetermineW2 = multiplication byσ̄† by solving nonlinear least squares problem
for τ = log(σ̄†) - simple device to ensure that computedW2 is positive definite.
Used RVL/Alg implementation of LBFGS.

4. To avoid migration aperture edge artifacts, focussed on central region of model
via tapered spatial mute (“cutoff function”).

21

Velocity Pert. vs. Scaling-Filtering Inversion

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

2 4 6 8 10
horizontal location (km)

0

0.5

1.0

1.5

2.0

2.5

3.0
de

pt
h

(k
m

)

2 4 6 8 10
horizontal location (km)

Figure 3. Left: Velocity perturbation, difference of original Marmousi model and
40 m smoothing. Right: Approximate inversion from Scaling-Filtering Algorithm.

22

Velocity Pert. vs. Scaling Only

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pt

h
(k

m
)

2 4 6 8 10
horizontal location (km)

0

0.5

1.0

1.5

2.0

2.5

3.0
de

pt
h

(k
m

)

2 4 6 8 10
horizontal location (km)

Figure 4. Left: Velocity perturbation, difference of original Marmousi model and
40 m smoothing. Right: Approximate inversion from Scaling-Filtering Algorithm.

23

Resimulations: Exact vs. Scaling-Filtering

0

0.5

1.0

1.5

2.0

2.5

tim
e

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

0

0.5

1.0

1.5

2.0

2.5

tim
e

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

Figure 5. Shot at sx=7500m. Left: Born simulation with exactmodel, truncated by
spatial mute. Right: Born resimulation using scaling-filtering approximate

inversion.

24

Resimulations: Exact vs. Scaling Only

0

0.5

1.0

1.5

2.0

2.5

tim
e

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

0

0.5

1.0

1.5

2.0

2.5

tim
e

(s
)

-2.0 -1.5 -1.0 -0.5
offset (km)

Figure 6. Left: Born simulation with exact model, truncatedby spatial mute.
Right: Born resimulation using scaling-filtering approximate inversion.

25

The Smoking Gun: Spectral Comparison

0

20

40

60

fre
qu

en
cy

(H
z)

5
power

Figure 7. Spectra of simulations for sx=7500m, stacked. Black = true model
(truncated by spatial mute), Blue = Scaling-Filtering approx. inversion, Red =

Scaling-only approx. inversion. Note missinglinear-in-frequencytrend in
scaling-only result - equivalent to missing division by|k|.

26

Conclusions

• Griewank’s optimal checkpointing algorithm dramaticallyreduces storage re-
quired for RTM (by over an order of magnitude) -enabling technology.

• 3D RTM should be possiblein-coreon modest clusters. 2D RTM requires no
intraloop i/o. Checkpointing advantage willincreaseif flops beat memory (Cell,
GPUs,...).

• Approximation of Born inversion by RTM plus scaling requires additionalfilter-
ing step - cost is extra modeling/migration loop (cost of scale factor estimation
is insignificant).

• Scaling-filtering approximate inversion promising aspreconditionerfor iterative
Born inversion using Krylov-type iteration (CG and relatives).

• Theory, practice both requirenonreflecting background velocities. Coherent
approach to general imaging problems (eg. salt boundary location) appears to
require nonlinear inversion.

27

