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MVA, Nonlinear Inversion, and Extended
Modeling




Extended Modeling

Modeling and Inversion:

e )M = model spaceD = data space
e ' : M — D = modeling operator, aka forward map, aka simulator,...
e Inversion: givend € D, findm € M so thatF'|m]| ~ d

Extended modeling and inversion:

e )/ = extendednodel space

oY : M — M = extension operator, 1-1,\ containsM”. x[M] Cc M =
“physical models”.

o ' : M — D = extended modeling operatafm]| = F|[x[m]].

e Extended inversion: gived € D, find m € M so thatF'[m| ~ d - physically
meaningful only ifm = x[m)|.




Extended Inversion

Since extended model space has more degrees of freedongLatyis more likely.

Same old, same old: look for. so that (1)m is in range ofy, i.e. m = x|m]| for
somem, and (2)F[m] ~ d. Thenm is a solution of original inverse problem -
nothing has been gained.

Possibility of genuinely different problem: invent a fuiect v : M — R* so
thaty[m] = 0 & m = x|m| for somem € M. Then inverse problem becomes
optimization problem

min,,y[m] subj F[m] ~ d

Many such functions - some of these optimization problems mayuaditgtively
better (closer to quadratic) than others.




Familiar Extensions

M = positive functions oY = subsurface domaid/ = functions onX x H, H =
additional degrees of freedom.

Common Acquisition Parametelndep. models for each offset or planewave or...
Expl: common offseextension.H = {range of surface offsefs F' = independent
modeling for each offsety = repeat same model at each offset (“flat gathers”).

Space/Time ShiftH = X, M = distributions onX x X, interpreted as kernels of
SPD operatorsF' = “action at distance” modeling operators obtained by r@p
physical positive definite fields (density, Hooke tensgrwith SPD operatorsy

= operators are multiplcation by corresponding physicéddi€¢kernels are concen-
trated on diagonal).

Typical: limit degrees of freedom in op. to same number aa:ded. p(xi,x2) =
(1, Y1, T2, Y2, (21 + 22)/2)0(21 — 29) - Claerbout 1971. Other possibilities: Sava-
Fomel SEG 2005.
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MVA as Extended Inversion

MVA based on linearized (tangent) modeling of nonlinearspbgF : M — D:

e M = tangent space of nonlinear model = pairg), om) € M x M;
e F' = DJF =Born modeling;
e For inversion choose®” to mean “close” (in natural norm of);

e FOr migration choose” to mean “has right phases but maybe wrong ampli-
tudes”;

e M = tangent space of nonlinear extension = paits, om) € M x M - might
as well limit tolinearization about physical modegise. my = x|my|;

e ' = DF = Born extended modeling;

e \ typically linear, so its linearization i®x|(mg, dm)| = (x[mo|, x[dm]).




Nature of Linearized Extended Modeling

Fundamental results aboft

Nolan & S. 1996 (SEG), Stolk & S. 20045e€ophysalso Brandsberg-Dahl & de-
Hoop 2004 Geophys: Common Acquisition Parameter extended inverse problem
not uniguely solvable in general: in presence of multigaghican find multiple
solutionsfor samem, (eg. flat and non-flat events in gathers for same velocity -

“kinematic PSDM artifacts”).

deHoop & Stolk 2001, Stolk, deHoop & S. 200Solution of Space/Time Shift
extended inverse problem with full 3D data uniquely detaedibym, (some pro-
ViIS0s).my (Incl. v) kinematically corrects only solutions in range of.

Lesson: the superiority of “wave equation migration” liesformulation (use of
Space/Time Shift extension) and adequate data, not congnabhmethod.




Semblance

Upshot: only Space/Time Shift extension generally obeys

Semblance Principleorrectm < solutions(y|my|, dm) of extended linearized
Inverse problem all in range gf.

Leads to various optimization formulations: choa@swihilatoriV : M — ... so
thatm = x[m] < Wm] = 0. Then definey[m| = £||Wm||?, solve

ming,y[m| subj Fim] ~ d
MVA setting: assumingn, determines extended inversion, eliminéate :
F[(x[mg],om)] = d & dm = G[my, d]. Optimization formulation of MVA:

. 1 =
min,,,J[mo, d] = §||WG[m0, d)||*
Stolk & S. 2003:J smooth< W (pseudollifferentials- DSVA




A (Very?) Special Case

Model: M = midpoint-dependent(t, x,,) x midpoint-dependent reflectivity (“stacked
section”), F’ = convolutional model (Born approximation!)

Extended Model - special case of CAR: = midpoint dependent x ensemble of
CMP gathersy = repeat zero-offset tracé, = convolutional model (INMO){& =

NMO

Annihilator W = offset divided differences within CMP gathers, leads tovBS
NMO - most recent implementation released to sponsors 1/06.

S. 1999, 2001: All stationary points of the DSVA-NM@are global minima.




Nonlinear MVA = Inversion

Big Lesson of MVA context:F' not smooth as a function @f, soG not smooth as
function of mg (cycle skipping, loss of derivatve - Stolk 200BUJT can still find

smooth functions of7[m, d].

Substitute for “velocity control’n, in nonlinear contextfull bandwidth dataRa-
tionale: appears likely that will determine. Evidence incomplete but suggestive:

e numerics - OLS nonlinear inversion, eg. Santosa-Sacks, ks et al. 1995,
Shin et al. 2001.

e mathematics - Ramm’s uniqueness theorem (Ramm, 1989)

Major need: theoretical framework for nonlinear extendeeerse problems, both
types of extensions. For example: what model claggesre (a) computationally
tractable and (b) have uniquely solvable extended inversglgms?
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MVA with two different extensions: the coherent
noise issue
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DSVA-NMO and Land Data (Richard Verm &
Willlam W. Symes, SEG 06)

Thanks: Geokinetics

(see SEG presentation)
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DSVA-DSR and migration noise (Alexandre
Khoury, Willlam W. Symes, Paul Willlamson and
Peng Shen, SEG 06)

Thanks: Total E&P USA
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DSVA-DSR

Based on Space/Time Shift extension, Claerbout’s speasd (diagonal in).

This time G is DSR (“shot-geophone”) migration. Similar results foosprofile:
P. Shen thesis 2004, SEG 2003 and 2005. Annihildtor multiply by offseth.
Presumption: ifv kinematically consistent with data> p focused ath = 0 <
Jps|v; d] minimized over, where

Jps|v; d] = Z\hpnth

mhn

pn(m, h,0) = depth-extrapolated shot-geophone field in midpainand offseth
coordinates, depth,, time lag =0.
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The Algorithm

Because/pg Is smooth and (perhaps) unimodal, can use rapidly conveoyersi-
Newtonalgorithm.

e Limited memory variant of Broyden-Fletcher-Goldfarb-8ha (Nocedal, 1980
- available through Netlib);

e \elocity parametrization - bicubic splines, sigmoid regaetation to enforce
bounds;

e Gradient computation - adjoint state method applied to DSR.

[See abstract, references for detalls]
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Example 1. Marmousi reflectivity, linear velocity

Data (both examples) generated by time domain FD method don Brodeling.
Source wavelet = 4-10-25-35 Hz zero phase trapezoidal aasdpter.

Target velocity, used to generate data: linear, = 1.5 kmfs-at0, = 4.5 km/s at
2z = 3km, represented on bicubic spline grid of 6 nodes if\x = 1.8 km) and 5
nodes inz (Az = 0.75 km).

Initial velocity also linear, =2 km/s at = 0, = 4.5 km/s at = 3 km.

Reflectivity = Marmousi velocity model (Versteeg and Gra@91) minus 20 m
smoothing.

Data geometry same as original.
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Example 1. Marmousi reflectivity, linear velocity

Position (km) Position (km)

Depth (km)
Depth (km)

Left: Migrated image at initiab. Right: after 20 LBFGS updates.
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Example 1. Marmousi reflectivity, linear velocity

. Position (kmg Position (km)

Left: Input reflectivity (“true” image). Right: image from®velocity analysis.
Good focusing and geometry in center. Some residual “sagh fnitial velocity
error remains on sides. Suggests that larger apestungore accuratepg.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity

Position (km) Position (km)
5

Modeling Inputs. Left: Smoothed Marmousi velocity (160 masthing width).
Right: layered reflectivity.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity

Position (km) Position (km)
5

=

Depth (km)
Depth (km)

N

Left: Linear velocity, initial guess for optimization. Rifj image.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity

Position (km) Position (km)
5

Depth (km)
=

Depth (km)

N

After 20 LBFGS iterations. Left: velocity. Right: image.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity

Position (km) Position (km)
5

Modeling Inputs. Left: Smoothed Marmousi velocity (160 masthing width).
Right: layered reflectivity.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity

Offset (km) Offset (km) Offset (km)
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Plot of image gather scaled lhyand squared (sum of all such scaled, squared
gathers =Jps). Left: initial model. Center: 20 LBFGS updates Right: uhp




Example 2: Layered reflectivity, smoothed
Marmousi velocity

How can a “wrong” model generate better focus than a “right’thei?
Cause: coherent noise in image gathers.

Possible causes of largkr=£ 0 signal in image gathers for “true” velocity:

e coherent noise in data [various remedies, but unlikely ta teetor here];
e edge diffractions [remedy: taper on all axes];

e mismigration of high angle eventgonsistent with appearance of gathers. [rem-
edy: better propagator? Two-way RTM?].
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Conclusions - DSVA-DSR

e Have demonstrated a DSR-based automated VA prototypastiate to 3D via
common azimuth approximation.

e Cost of velocity analysis- a few 10’s of migrations.

e With present components, algorithm makes large model epdatd greatly im-
proves focusing of images.

e Avalilable aperture affects accuracy (cf. tomography).

e Coherent noise in image volume, from data or imaging operasn degrade
accuracy.

Action items for further research: assess effect of betb@ré expensive!) extrapo-
lators in reducing operator-induced coherent noise; iya® effect and mitigation
/ modeling of coherent data noise; quantify aperture infteeon velocity resolu-
tion.
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Current Projects
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Kirchhoff-based DS via Eikonal Solvers

Attraction: best chance of extension of DSVA-NMO theory9interesting nu-
merics (eikonal package), plus applicable to sediment ingagroblems.

Theory: main step in “all stationary points” proof uses mygméic moveout tdo-
calizethe influence of moveout error in velocity. Possible subttitn PSDM case:
time migration(esp. theory incl. error estimates developed by CameromeFo
Sethian SEG 06).

Numerics: probably have to go beyond 1st order scheme ingsiead in current
package to gain enough traveltime accuracy.

Status: Jintan Li MA project to demonstrate basic imagindec®S computation.
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RTM-based DS

Concept introduced by S., also Biondi & Shan, in 02. Intraslaift in crosscorre-
lation

I(x,h) =) At*v(x)(Lu")(x — h)w""(x + h)

so usual RTM output obtained with = 0 (recall: v = source wavefieldy™ =
receiver wavefield[. = Laplacian approximation).

Prospects for (i) layered, (ii) 2D, with high efficiency plization:

e accuracy regulated by FD scheme; high angle waves promhgatally well;
e judge focussing of finite frequency wavefields;

e generic source-receiver migration, admits arbitrary pgation angles, vertical
and horizontal offset gathees- VA for arbitrarily complexnonreflectingoack-
grounds.
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Nonlinear Inversion and MVA

Major source of coherent noise: multiple reflection.

Proposed 2005: nonlinear extension and semblance concept.

What stands in the way:

e Theory: when is extended IP invertible?

e Even for layered problems: strong reflectienmajor reflectorsn background
model- invertibility? (No known mathematical results!)

e For CAP extensions: how to avoid small heterogenettesultipathing;
e For S/TS extensions: how to deal mathematically, comparatly with SPD
operator coefficients (for layered media, these are cotieolal so no sweat).
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Other Issues: attenuation, sources

Viscoelasticity: formerly a major TRIP emphasis (Blancleprtsson, Minkoff).

Minkoff thesis: account for (1) velocity (DSO), (2) elasieP reflection, (3) vis-
coelastic propagation, (4) source anisotropy, and youficaeismic datg90%).
Don’t and youcan't, and moreover you get the wrong answer (AVO-wise).

Joint inversion source-reflectivity (Minkoff 1997, WinglodMA 1999) should be
extended to nonlinear inversion.

Nonlinear acoustic/source inversion: Lailly (2004, 20P06806) suggests this is not
possible, but we have our doubts...
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