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Agenda

• MVA, Nonlinear Inversion, and Extended Modeling

• MVA with two different extensions: the coherent noise issue

– DSVA-NMO and Land Data (Verm & S., SEG 06)

– DSVA-DSR and migration noise (Khoury et al., SEG 06)

• Projects:

– Kirchhoff-based DS via Eikonal Solvers

– RTM-based DS

– Nonlinear Inversion and MVA

– Other issues: attenuation, sources
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MVA, Nonlinear Inversion, and Extended

Modeling
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Extended Modeling

Modeling and Inversion:

• M = model space,D = data space

• F : M → D = modeling operator, aka forward map, aka simulator,...

• Inversion: givend ∈ D, find m ∈ M so thatF [m] ' d

Extended modeling and inversion:

• M̄ = extendedmodel space

• χ : M → M̄ = extension operator, 1-1, “̄M containsM ”. χ[M ] ⊂ M̄ =
“physical models”.

• F̄ : M̄ → D = extended modeling operator:F [m] = F̄ [χ[m]].

• Extended inversion: givend ∈ D, find m̄ ∈ M̄ so thatF̄ [m̄] ' d - physically
meaningful only ifm̄ = χ[m].
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Extended Inversion

Since extended model space has more degrees of freedom, ambiguity is more likely.

Same old, same old: look for̄m so that (1)m̄ is in range ofχ, i.e. m̄ = χ[m] for
somem, and (2)F̄ [m̄] ' d. Thenm is a solution of original inverse problem -
nothing has been gained.

Possibility of genuinely different problem: invent a function γ : M̄ → R
+ so

that γ[m̄] = 0 ⇔ m̄ = χ[m] for somem ∈ M . Then inverse problem becomes
optimization problem:

minm̄γ[m̄] subj F̄ [m̄] ' d

Many such functions - some of these optimization problems may be qualitatively
better (closer to quadratic) than others.
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Familiar Extensions

M = positive functions onX = subsurface domain,̄M = functions onX ×H, H =
additional degrees of freedom.

Common Acquisition Parameter:Indep. models for each offset or planewave or...
Expl: common offsetextension.H = {range of surface offsets}, F̄ = independent
modeling for each offset,χ = repeat same model at each offset (“flat gathers”).

Space/Time Shift:H = X, M̄ = distributions onX × X, interpreted as kernels of
SPD operators.̄F = “action at distance” modeling operators obtained by replacing
physical positive definite fields (density, Hooke tensor,...) with SPD operators.χ
= operators are multiplcation by corresponding physical fields (kernels are concen-
trated on diagonal).

Typical: limit degrees of freedom in op. to same number as data: eg. ρ̄(x1,x2) =
ρ̃(x1, y1, x2, y2, (z1 + z2)/2)δ(z1 − z2) - Claerbout 1971. Other possibilities: Sava-
Fomel SEG 2005.
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MVA as Extended Inversion

MVA based on linearized (tangent) modeling of nonlinear physicsF : M → D:

• M = tangent space of nonlinear model = pairs(m0, δm) ∈ M×M;

• F = DF = Born modeling;

• For inversion choose “'” to mean “close” (in natural norm onD);

• For migration choose “'” to mean “has right phases but maybe wrong ampli-
tudes”;

• M̄ = tangent space of nonlinear extension = pairs(m̄0, δm̄) ∈ M̄ × M̄ - might
as well limit tolinearization about physical models, i.e. m̄0 = χ[m0];

• F̄ = DF̄ = Born extended modeling;

• χ typically linear, so its linearization isDχ[(m0, δm)] = (χ[m0], χ[δm]).
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Nature of Linearized Extended Modeling

Fundamental results aboutF̄ :

Nolan & S. 1996 (SEG), Stolk & S. 2004 (Geophys, also Brandsberg-Dahl & de-
Hoop 2004 (Geophys.): Common Acquisition Parameter extended inverse problem
not uniquely solvable in general: in presence of multipathing, can find multiple
solutionsfor samem0 (eg. flat and non-flat events in gathers for same velocity -
“kinematic PSDM artifacts”).

deHoop & Stolk 2001, Stolk, deHoop & S. 2005:solution of Space/Time Shift
extended inverse problem with full 3D data uniquely determined bym0 (some pro-
visos).m0 (incl. v) kinematically correct⇔ only solutions in range ofχ.

Lesson: the superiority of “wave equation migration” lies in formulation (use of
Space/Time Shift extension) and adequate data, not computational method.
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Semblance

Upshot: only Space/Time Shift extension generally obeys

Semblance Principle:correctm0 ⇔ solutions(χ[m0], δm̄) of extended linearized
inverse problem all in range ofχ.

Leads to various optimization formulations: chooseannihilatorW : M̄ → ... so
thatm̄ = χ[m] ⇔ W [m] = 0. Then defineγ[m] = 1

2
‖Wm‖2, solve

minm̄γ[m̄] subj F̄ [m̄] ' d

MVA setting: assumingm0 determines extended inversion, eliminateδm̄ :
F̄ [(χ[m0], δm̄)] = d ⇔ δm̄ = Ḡ[m0, d]. Optimization formulation of MVA:

minm0
J [m0, d] =

1

2
‖WḠ[m0, d]‖2

Stolk & S. 2003:J smooth⇔ W (pseudo)differential⇒ DSVA
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A (Very?) Special Case

Model: M = midpoint-dependentv(t0,xm)×midpoint-dependent reflectivity (“stacked
section”),F = convolutional model (Born approximation!)

Extended Model - special case of CAP:M̄ = midpoint dependentv × ensemble of
CMP gathers,χ = repeat zero-offset trace,̄F = convolutional model (INMO),Ḡ =
NMO

Annihilator W = offset divided differences within CMP gathers, leads to DSVA-
NMO - most recent implementation released to sponsors 1/06.

S. 1999, 2001: All stationary points of the DSVA-NMOJ are global minima.
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Nonlinear MVA = Inversion

Big Lesson of MVA context:F̄ not smooth as a function of̄m, soḠ not smooth as
function ofm0 (cycle skipping, loss of derivatve - Stolk 2000)BUT can still find
smooth functions of̄G[m0, d].

Substitute for “velocity control”m0 in nonlinear context:full bandwidth data.Ra-
tionale: appears likely that will determinēm. Evidence incomplete but suggestive:

• numerics - OLS nonlinear inversion, eg. Santosa-Sacks 1987, Bunks et al. 1995,
Shin et al. 2001.

• mathematics - Ramm’s uniqueness theorem (Ramm, 1989)

Major need: theoretical framework for nonlinear extended inverse problems, both
types of extensions. For example: what model classesM̄ are (a) computationally
tractable and (b) have uniquely solvable extended inverse problems?
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MVA with two different extensions: the coherent

noise issue
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DSVA-NMO and Land Data (Richard Verm &

William W. Symes, SEG 06)

Thanks: Geokinetics

(see SEG presentation)
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DSVA-DSR and migration noise (Alexandre

Khoury, William W. Symes, Paul Williamson and

Peng Shen, SEG 06)

Thanks: Total E&P USA
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DSVA-DSR

Based on Space/Time Shift extension, Claerbout’s special case (diagonal inz).

This timeḠ is DSR (“shot-geophone”) migration. Similar results for shot profile:
P. Shen thesis 2004, SEG 2003 and 2005. AnnihilatorW = multiply by offseth.
Presumption: ifv kinematically consistent with data⇔ p focused ath = 0 ⇔

JDS[v; d] minimized overv, where

JDS[v; d] =
1

2

∑

m,h,n

|hpn(m, h, 0)|2

pn(m, h, 0) = depth-extrapolated shot-geophone field in midpointm and offseth
coordinates, depthzn, time lag =0.
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The Algorithm

BecauseJDS is smooth and (perhaps) unimodal, can use rapidly convergent quasi-
Newtonalgorithm.

• Limited memory variant of Broyden-Fletcher-Goldfarb-Shanno (Nocedal, 1980
- available through Netlib);

• Velocity parametrization - bicubic splines, sigmoid representation to enforce
bounds;

• Gradient computation - adjoint state method applied to DSR.

[See abstract, references for details]
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Example 1: Marmousi reflectivity, linear velocity

Data (both examples) generated by time domain FD method for Born modeling.
Source wavelet = 4-10-25-35 Hz zero phase trapezoidal bandpass filter.

Target velocity, used to generate data: linear, = 1.5 km/s atz = 0, = 4.5 km/s at
z = 3km, represented on bicubic spline grid of 6 nodes inx (∆x = 1.8 km) and 5
nodes inz (∆z = 0.75 km).

Initial velocity also linear, = 2 km/s atz = 0, = 4.5 km/s atz = 3 km.

Reflectivity = Marmousi velocity model (Versteeg and Grau, 1991) minus 20 m
smoothing.

Data geometry same as original.

16



Example 1: Marmousi reflectivity, linear velocity
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Left: Migrated image at initialv. Right: after 20 LBFGSv updates.
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Example 1: Marmousi reflectivity, linear velocity

0

1

2

3

De
pt

h 
(k

m
)

4 6
Position (km)

0

1

2

D
ep

th
 (k

m
)

4 6
Position (km)

Left: Input reflectivity (“true” image). Right: image from DS velocity analysis.
Good focusing and geometry in center. Some residual “sag” from initial velocity

error remains on sides. Suggests that larger aperture⇒ more accuratevDS.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity
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Modeling Inputs. Left: Smoothed Marmousi velocity (160 m smoothing width).
Right: layered reflectivity.
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Example 2: Layered reflectivity, smoothed

Marmousi velocity
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Left: Linear velocity, initial guess for optimization. Right: image.
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Example 2: Layered reflectivity, smoothed

Marmousi velocity
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After 20 LBFGS iterations. Left: velocity. Right: image.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity
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Modeling Inputs. Left: Smoothed Marmousi velocity (160 m smoothing width).
Right: layered reflectivity.
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Example 2: Layered reflectivity, smoothed
Marmousi velocity
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Plot of image gather scaled byh and squared (sum of all such scaled, squared
gathers =JDS). Left: initial model. Center: 20 LBFGS updates. Right: input
(“true”) model.JDS for updated model actuallysmallerthan for input model!
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Example 2: Layered reflectivity, smoothed

Marmousi velocity

How can a “wrong” model generate better focus than a “right” model?

Cause: coherent noise in image gathers.

Possible causes of largerh 6= 0 signal in image gathers for “true” velocity:

• coherent noise in data [various remedies, but unlikely to bea factor here];

• edge diffractions [remedy: taper on all axes];

• mismigration of high angle events- consistent with appearance of gathers. [rem-
edy: better propagator? Two-way RTM?].
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Conclusions - DSVA-DSR

• Have demonstrated a DSR-based automated VA prototype, extensible to 3D via
common azimuth approximation.

• Cost of velocity analysis' a few 10’s of migrations.

• With present components, algorithm makes large model updates and greatly im-
proves focusing of images.

• Available aperture affects accuracy (cf. tomography).

• Coherent noise in image volume, from data or imaging operator, can degrade
accuracy.

Action items for further research: assess effect of better (more expensive!) extrapo-
lators in reducing operator-induced coherent noise; investigate effect and mitigation
/ modeling of coherent data noise; quantify aperture influence on velocity resolu-
tion.
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Current Projects
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Kirchhoff-based DS via Eikonal Solvers

Attraction: best chance of extension of DSVA-NMO theory, plus interesting nu-
merics (eikonal package), plus applicable to sediment imaging problems.

Theory: main step in “all stationary points” proof uses hyperbolic moveout tolo-
calizethe influence of moveout error in velocity. Possible substitute in PSDM case:
time migration(esp. theory incl. error estimates developed by Cameron, Fomel,
Sethian SEG 06).

Numerics: probably have to go beyond 1st order scheme implemented in current
package to gain enough traveltime accuracy.

Status: Jintan Li MA project to demonstrate basic imaging code, DS computation.
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RTM-based DS

Concept introduced by S., also Biondi & Shan, in 02. Introduce shift in crosscorre-
lation

I(x,h) =
∑

n

∆t2v(x)(Lun)(x − h)wn+1(x + h)

so usual RTM output obtained withh = 0 (recall: un = source wavefield,wn =
receiver wavefield,L = Laplacian approximation).

Prospects for (i) layered, (ii) 2D, with high efficiency parallization:

• accuracy regulated by FD scheme; high angle waves propagated equally well;

• judge focussing of finite frequency wavefields;

• generic source-receiver migration, admits arbitrary propagation angles, vertical
and horizontal offset gathers⇒ VA for arbitrarily complexnonreflectingback-
grounds.
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Nonlinear Inversion and MVA

Major source of coherent noise: multiple reflection.

SO USE IT!!!!!

Proposed 2005: nonlinear extension and semblance concept.

What stands in the way:

• Theory: when is extended IP invertible?

• Even for layered problems: strong reflection⇔ major reflectorsin background
model- invertibility? (No known mathematical results!)

• For CAP extensions: how to avoid small heterogeneities⇒ multipathing;

• For S/TS extensions: how to deal mathematically, computationally with SPD
operator coefficients (for layered media, these are convolutional so no sweat).
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Other issues: attenuation, sources

Viscoelasticity: formerly a major TRIP emphasis (Blanch, Robertsson, Minkoff).

Minkoff thesis: account for (1) velocity (DSO), (2) elasticP-P reflection, (3) vis-
coelastic propagation, (4) source anisotropy, and you canfit seismic data(90%).
Don’t and youcan’t, and moreover you get the wrong answer (AVO-wise).

Joint inversion source-reflectivity (Minkoff 1997, Winslow MA 1999) should be
extended to nonlinear inversion.

Nonlinear acoustic/source inversion: Lailly (2004, 2005,2006) suggests this is not
possible, but we have our doubts...
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