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Summary

Shot profile migration provides a convenient framework
for implementation of a differential semblance algorithm
for estimation of complex, strongly refracting velocity
fields. The objective function minimized in this algo-
rithm may measure either focussing of the image in
offset or flatness of the image in (scattering) angle. The
gradient of this objective is a by-product of a depth
marching scheme, an requires a few extra computations
beyond those necessary to produce the prestack data
volume. A strongly refracting 2D synthetic data example
illustrates the excellent image quality obtainable from
model-consistent data. Offset and angle variants behave
differently, with more rapid convergence for the offset
variant, underlining the importance of a mathematically
well posed formulation: in 2D, the angle variant is much
less well-conditioned than the offset variant.

Introduction

Differential semblance velocity analysis (“DSVA”,
(Symes, 1986)) compares nearby image traces to refine
a velocity estimate. Shen et al. (2003) presented a
version of this approach to velocity estimation suitable
for strongly refracting models. The algorithm described
in (Shen et al., 2003) uses double-square-root (“DSR”)
migration to create an image volume. The failure of
the migration to focus the image in (subsurface) offset
is an index of velocity error. The mean square of the
image volume scaled by offset is an objective measure of
focusing failure. DSVA uses numerical minimization of
this objective to update the velocity iteratively and thus
minimize this objective.

Several authors have presented DSVA methods for later-
ally heterogeneous velocity based on other forms of migra-
tion (Symes and Versteeg, 1993; Kern and Symes, 1994;
Chauris and Noble, 2001; Mulder and ten Kroode, 2002;
Foss et al., 2004). Shot-geophone migration, exempli-
fied by the DSR method, has the very significant advan-
tage in this context of freedom from kinematic artifacts,
which makes it especially suitable for velocity analysis in
the presence of strong refraction (Stolk and Symes, 2004;
Stolk et al., 2005).

This paper presents an algorithm similar to that described
by Shen et al. (2003), using shot profile (rather than
DSR) migration by depth extrapolation. The main com-
putation needed in DSVA, not provided by typical imple-
mentations of shot profile migration, is the computation
of the objective gradient. We show how the gradient may
be computed by adding appropriate computations to the
depth stepping loop (this is an example of the adjoint

state method). We also compare two possible variants of
the objective minimized by DSVA: the offset-domain ob-
jective, described above, and an analogous objective that
measures flatness of image gathers parametrized by scat-
tering angle (Sava and Fomel, 2003). We find that the
straightforward measure of flatness, the angle derivative,
is more difficult to optimize sucessfully than is the off-
set domain objective. This difficulty may be understood
in terms of the mathematical properties of the two objec-
tives. We illustrate the ability of DSVA to find an effective
velocity estimate in the presence of strong lateral hetero-
geneity, using a 2D synthetic example based on the Mar-
mousi velocity model (Versteeg, 1993). We create Born
data using the high spatial frequencies of Marmousi as
perturbation about a smoothed reference model. DSVA
is able to adjust the velocity to produce a quite precise
image of the reflector structure.

Differential Semblance

We will discuss explicitly the migration of 2D images,
but note that much of the discussion carries over without
modification to 3D migration. Image (mid)point coor-
dinates are x and z; (migrated) offset, denoted by h, is
half of the correlation distance between the downward
continued source and receiver wavefields. The image
volume produced by shot-geophone migration will be
denoted by I(x, z, h).

We restrict h to be horizontal, as is appropriate when
rays carrying significant energy always make an acute an-
gle with the vertical direction (the “DSR assumption”).
We also assume that the data is kinematically complete,
i.e. that event slownesses determine raypaths uniquely.
This is the case for full 3D (areal) acquisition, also for
narrow azimuth acquisition provided that crossline struc-
tural heterogeneity is mild. Under these assumptions,
shot-geophone migration using a kinematically correct ve-
locity focusses the prestack common image at the origin
in offset (Stolk et al., 2005). An objective measure of
focussing in offset is
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The differential semblance operator Ph = h is a zero or-
der differential operator, meaning that it does not change
the wavenumber spectrum of I . An alternative objective
function can be posed to measure the flatness of the image
in angle.
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where R is the Radon transform (Sava and Fomel, 2003)
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from offset to angle θ, R
−1 its inverse. Jθ also van-

ishes when the velocity is kinematically correct, under
the standing assumptions (Stolk et al., 2005).

Shot Profile Algorithm

Introduce source S and receiver R wavefields,

S(x, z, s, ω) = G+(x, z, s, ω)

R(x, z, s, ω) =

Z

G+(x, z, r, ω)d(r, s, ω)dr

which satisfy the one-way wave equations
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R(x, z, s, ω) = δ(x − r)δ(z)d(r, s, ω)

Choose a depth step ∆z, set zk = k∆z, k = 0, 1, 2, ....
Denote by H(ck) an (approximate) propagator for the

operator
“
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from zk to zk+1, with

ck(x) = c(x, k∆z). Setting Sk(x, s, ω) = S(x, k∆z, s, ω)
and similarly for R we can write the depth extrapolation
scheme as

H(ck)Sk = Sk+1, H(ck)Rk = Rk+1, k = 0, 1, 2, ...Nz − 1
(3)

Initial data at the surface is S0(x, s, ω) = δ(x − s) and
R0(x, s, ω) =

R

drδ(x − r)d(r, s, ω), respectively. Here

H(ck) is a linear operator on the wavefields to be extrap-
olated from z = k∆z to z = (k + 1)∆z. The superscript

is used as the depth index for c, ck = c(·, k∆z), and the
downward continued wavefields S, R and the image in
offset I as well. We write the image in offset and depth
as

Ik(x, h) = Re
X

s,ω

Sk(x − h, s, ω)Rk(x + h, s, ω)

For either version of J , the gradient is

∇cJ =

„

∂I

∂c

«

∗

P ∗PI, (4)

in which P = Ph or = Pθ. For convenience, we defined
the image residual DI = P ∗PI .

A recursive computation of the adjoint derivative
(∂I/∂c)∗ is also possible; this trick is called the “adjoint
state method” in the control literature, and in fact all
wave equation migration methods can be viewed as in-
stances (Stolk et al., 2005). See Shen et al. (2003) for
a similar adjoint state computation for DSVA based on
DSR migration.

Introduce adjoint state variables DS, DR and Dc. These
fields are related to the input residual field DI by the
adjoint state evolution equations

„

DSk+1

DRk+1

«

=

„

H(ck)∗DSk+1 + (Ak+1
S )∗DIk+1

H(ck)∗DRk+1 + (Ak+1
R )∗DIk+1

«

(5)

Dck =

„

∂H

∂ck
Sk

«

∗

DSk+1 +

„

∂H

∂ck
Rk

«

∗

DRk+1 (6)

(Ak
S)f(x, h, s, ω) = f(x − h, s, ω)Rk(x + h, s, ω)

(Ak
R)f(x, h, s, ω) = Sk(x − h, s, ω)f(x + h, s, ω)

The adjoint derivative of H(c)S with respect to c must
be computed, but this is generallly straightforward, as
it involves only the formulae for a single step of depth
extrapolation. The equations (5), (6) are to be solved in
decreasing k with DSNz = DRNz ≡ 0, in a loop over
source index and frequency. The gradient at depth level
k is accumulated during this loop:

(∇cJ)k = Re{
X

s,ω

Dck}.

Inversion

Successful optimization of the functions defined by
equations (1) and (2) requires that the underlying
mathematical structure of migration be respected. In
particular, the velocities encountered during the iteration
must remain smooth on the wavelength scale. To enforce
this smoothness, we use a B-spline representation based
on a relatively coarse spacing of spline nodes. Let m be
a set of B-spline model parameters and B the B-spline
sampling operator (onto the image grid). Restriction to
velocities of the form c = Bm gives a gradient in the
spline parameters of the form

∇mJ(Bm) = B∗∇cJ(c)

(here J = Jh or Jθ). We use a version of limited BFGS
algorithm (Nocedal and Wright, 2000) to minimize J as
a function of m. Only J and its gradient with respect m
is needed. We have now completely described the com-
putation of these quantities.

Examples

We constructed data consistent with the model under-
lying DSVA by smoothing the Marmousi model using a
lowpass filter that removes any length scale smaller than
150m. The difference between the original and smoothed
models served as the reflectivity γ. Synthetic Born data
is expressed via the downgoing one-way Green’s functions
of the smoothed velocity G+ via

d(r, s, ω) =

Z

G+(x, s, ω)G+(x, r, ω)γ(x)dx,

and can also be computed by solving a corresponding
depth extrapolation problem. The simulation is made
to acquire the same number of shots as the original Mar-
mousi dataset: the source locations span uniformly from
2.625km to 8.975km at the spacing of 0.025km. The re-
ceiver arrays are fixed for each shot and cover the entire
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surface with spacing 0.01km. The migration is performed
using frequencies from 3.3 to 40 Hzs on square grids of
0.01km each side. Note that use of this data in an inver-
sion test commits an “inverse crime”: the data completely
agrees with the model on which the inversion is based.

Fig.1 shows the initial velocity model used in the inver-
sion, obtained by smoothing the Marmousi model using a
B-spline fitting with length scale of 2.25km by 1km (hor-
izontal by vertical), much coarser than the resolution re-
quired for accurate imaging (see Fig.2) of the Marmousi
data set (Versteeg, 1993).

Forty seven iterations of BFGS resulted in the models
displayed in Figures (4) and (7). The fault block struc-
ture in the middle region has emerged in both cases; the
difference appear to be subtle. The image from offset do-
main DSVA (Figure (3)) is a very accurate rendition of
the structure of the actual Marmousi model, in all im-
portant respects. The angle domain image (Figure (6)) is
of distinctly lower quality. Comparison of angle gathers
(Figures (5), (8)) leads to the same conclusion: offset do-
main DSVA appears to have been more successful, given
the expended amount of computational effort. Note that
the angle gather displayed in Figure (5) is a postprocess
result.

The reason for this difference in performance lies in the
numerical condition of the Hessian operator. The oper-
ator Pθ is of order 1/2 (in 2D!), meaning that it scales
Fourier components by the square root of frequency. The
operator Ph, on the other hand, is bounded, i.e. does
not enhance high frequency components. As a result, the
Hessian (second derivative) operator of Jh is better con-
ditioned than the Hessian of Jθ (finite vs. infinite con-
dition). Convergence for Newton-like methods is heav-
ily influenced by Hessian condition (Nocedal and Wright,
2000).

Conclusion

Both offset and angle domain versions of DSVA are ef-
fective in updating a complex velocity model involving
strong refraction, though the offset domain variant
as presented here is somewhat more computationally
efficient. Either supplementing the operator Pθ with a
negative order factor, for 2D, or computing in 3D where
Pθ is bounded, would likely remove the comparative
advantage of the offset domain computation.

The test demonstrated here used “perfect” data, that
is, data corresponding precisely to the theory underly-
ing DSVA. Many open questions remain concerning the
sensitivity of the approach to data imperfections, on the
one hand, and the possibility of similar approaches based
on more sophisticated modeling, on the other.

Acknowledgement

The work of WWS was partly supported by The Rice
Inversion Project.

Fig. 1: Initial velocity model.

Fig. 2: Image obtained at the initial velocity model.
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Fig. 5: The optimized angle gathers by offset domain DSO.

Fig. 6: The optimized image by angle domain DSO.

Fig. 7: The optimized velocity by angle domain DSO.

Fig. 8: The optimized angle gathers by angle domain DSO.


