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Summary

Differential semblance velocity analysis flattens image
gathers automatically by minimizing the mean square
difference of neighboring traces in an image volume.
Implementations based on normal moveout correction as
“imaging” method are relatively fast, can accomodate
arbitrary acquisition geometry, and can be organized to
output 1D, 2D, or 3D interval velocity models. Within
the limits of its imaging methodology (mild structure,
data dominated by primary events), this approach to
velocity analysis appears to be robust and effective.

Introduction

Differential semblance velocity analysis (“DSVA”) is an
automated approach to prestack migration velocity
estimation. Its basis is the observation that pairs of
nearby image traces exhibit non-aliased residual move-
out, even when the migration velocity is dramatically
wrong. Objective measures of residual moveout based on
this concept can be optimized with respect to migration
velocity to produce objective velocity analyses which
flatten image gathers automatically.

Many variants of DSVA have been constructed, based on
a variety of prestack imaging methodologies: hyperbolic
or ray-trace NMO correction in CMP and plane wave do-
mains, two way reverse time, prestack Kirchhoff, and both
shot profile and double square root one way wave equa-
tion methods have all been used (Symes and Carazzone,
1991; Gockenbach and Symes, 1999; Symes and Versteeg,
1993; Mulder and ten Kroode, 2002; Shen et al., 2003).
All of these methods are limited by the requirements of
migration imaging:

• input data must be essentially primaries-only - in
particular, multiple reflections must have been effec-
tively suppressed prior to velocity analysis;

• trial velocity models must respect the require-
ments of the imaging engine, usually amounting to
some measure of smoothness, and possible a priori
bounds, chosen to ensure physical correctness and to
control numerical artifacts.

DSVA based on hyperbolic normal moveout suffers from
the most stringent applicability limits of any of the meth-
ods described above, but is also potentially the fastest,
as it relies on the simplest imaging engine. Velocity es-
timates based on NMO are of reasonable utility in areas
of low structural relief, either in themselves or as starting
models for more sophisticated model-building exercises.

This paper describes an implementation of hyperbolic

NMO-based DSVA with a number of features intended
to assist in its assessment for eventual use in a produc-
tion environment:

• industry standard data structures for input data and
diagnostic output;

• flexible velocity modeling accomodating 1D, 2D, and
3D variation within the limits implicit in the imaging
methodology;

• state-of-the-art numerical optimization.

We present velocities and image gathers obtained by
NMO-based DSVA applied to two North Sea lines. These
two marine 2D examples exhibit common features of
DSVA: convergence to reasonable velocity estimates in
a small number (O(10)) of iterations, each involving an
imaging step and some side computations; highly aligned
image gathers; agreement with standard velocity analysis;
measured degradation in the presence of coherent noise.

Algorithmic Details

NMO-based DSVA has been described a number of times,
for example by Gockenbach and Symes (1999). We refer
the reader to this paper and others referenced there for
details of the basic mathematical formulation. We note
that the smoothing operator factor mentioned in these
references has proven unnecessary in practice, and is
omitted in the implementation described here.

The following subsections discuss several key ingredients
of a successful DSVA implementation: data format and
preparation, velocity model representation, implementa-
tion of the NMO transformation, and numerical optimiza-
tion.

Data Preparation

Data traces are presorted into CMP gathers. Other at-
tributes which must be correctly defined in each trace
are source and receiver x and y coordinates, and source
and receiver depths. CMP x and y coordinates (as
opposed to CMP index) and (3D) offset are computed
from this fundamental data. We also require that the
delay after the zero phase of the wavelet be given. If this
delay is identified with delay after source initiation, then
implicitly a zero-phase source-signature deconvolution is
assumed to have been applied to the trace.

We have implemented these requirements using the SEGY
standard, using utilities from the Seismic Unix (“SU”)
package (Cohen and Stockwell, 2003). Necessary at-
tributes correspond to the SU header keys cdp, sx, sy,
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gx, gy, selev, gelev, and delrt. We have used an object
oriented approach to implementation, so any other data
structure assigning the appropriate attributes to traces
could be substituted for SEGY, at the price of writing
appropriate wrapper code.

Velocity Representation

NMO-based DSVA assumes a fixed nodal structure for
velocity representation. This placement is a user deci-
sion, and is static. Research on differential semblance
has suggested approaches to automatic and dynamic
velocity model definition (Symes, 1999), but this topic
remains an area for future research. We require that

• Nodes may be placed arbitrarily on arbitrary verti-
cal lines (“wells”), the wells placed arbitrarily within
vertical planes (“sections”), and the (parallel) sec-
tions be placed arbitrarily in space;

• Nodal values should be bounding, i.e. if each nodal
value specifying velocity model v1 is greater than the
corresponding nodal value specifying velocity model
v2, then at an arbitrary point in space (x, y, z),
v1(x, y, z) < v2(x, y, z);

• Velocity functions determined by the construction
should be smooth, that is, without discontinuities in
value or slope that would invalidate the naive geo-
metric optics underlying the convolutional model.

The Partially Irregular Grid (“PIGrid”) packages accom-
plishes all of these goals (Dussaud and Symes, 2005). A
PIGrid velocity is actually a function of the space vari-
ables, and can be sampled on an arbitrary grid (in fact, at
an arbitrary point). For use in optimization, adjoints of
the sampling functions are required, and the package pro-
vides these as well, along with a simple archival storage
formal.

NMO Implementation

The new twist in implementing NMO for automatic veloc-
ity analysis is that the derivative of the NMO correction
with respect to velocity is also needed, along with its
adjoint, and regrettably standard packages such as SU
do not provide these additional computations. Moreover,
implementation as a map between regular grids (t, t0,
or z) inevitably requires interpolation, which is not a
priori differentiable due to conditional branches and
comparisons which occur in natural interpolation code.
We have adopted a local cubic interpolation model which
minimizes this difficulty; Mulder and ten Kroode (2002)
elected a similar approach to this problem, which also
occurs in DSVA based on Kirchhoff migration. We used
a binning scheme: CMP x and y coordinates, averaged
over CMP bin, are used to assign traces to velocity bins,
and the velocity profile at the center of each velocity bin
is used to move out all traces assigned to that velocity
bin.

Controlling NMO stretch requires that upper and lower
bounds on velocity be maintained. We permitted the
same number of degrees of freedom (i.e. the same PI-
Grid) for upper and lower envelope velocities, which are
user specified but defaulted to ±10% of the initial velocity
estimate during optimization.

Numerical Optimization

We employ the Limited Memory Broyden-Fletcher-
Goldfarb-Shanno quasi-Newton algorithm (“LBFGS”),
generally considered the most effective modern uncon-
strained optimization algorithm under the widest variety
of circumstances (Nocedal and Wright, 1999). We have
used the Rice Vector Library (“RVL”) simulation-driven
optimization framework to implement this algorithm.
This implementation uses a line search subalgorithm to
guarantee a reduction in the objective. The line search
monitors the upper and lower velocity envelopes, by
means of a distance-to-boundary function which is a
generic attribute of the function interface in RVL.

Examples

We provide two examples illustrating the performance of
NMO-based DSVA. Both are 2D marine, from the North
Sea.

Example 1

This line overlies a nearly layered subsurface to 2 s two-
way time. Pegleg multiples from the water bottom are
evident, as is clear from Figure 2 left, which displays a
CMP from this line. Predictive deconvolution suppresses
the peglegs, see Figure 2 right. Suspecting from the
near-offset section that the shallow structure underlying
this line is laterally homogeneous, we elected to search for
a 1D velocity model. We selected 21 CMPs which were
then input to NMO-based DSVA. The initial velocity
estimate was constant = 1.5 km/s. Approximately
10 iterations of LBFGS produced a reduction of two
orders of magnitude in the objective gradient, which
was our stopping criterion. Each iteration required
several seconds on a relatively new Linux-PC platform;
the code was compiled with the gcc 3.3 compiler suite
with agressive floating point optimization. The resulting
NMO-corrected CMPs (Figure 1) are well-flattened,
validating our lateral homogeneity assumption.

Example 2

This example is taken from the Viking Graben data set
(Keys and Foster, 1998). This data exhibits a more com-
plex pattern of multiple reflections, with much stronger
surface-related multiples, than does Example 1. We
began with data to which hyperbolic Radon transform
multiple suppression had been applied. Considerable
multiple energy is still evident, but a primary reflection
series is made visible by this process. We chose 51
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CMPs covering the 10 km of line, and input these to
NMO-based DSVA. Approximately 20 steps of LBFGS
gave convergence from a constant initial velocity (1.5
km/s), convergence once again being defined as reduction
of two orders of magnitude in the gradient. Since the
velocity structure is known to be laterally heterogeneous,
we used a PIGrid with three wells, each having four
velocity nodes. NMO correction at the DSVA optimized
velocity, applied to the input data gathers, produced
the data displayed in Figure 3. The generally known
structure of this section is evident in Figure 3, and the
gathers are roughly flattened. To gauge the degree to
which kinematic coherence is achieved, we display one
of the input CMPs on the left side of Figure 4, and
its NMO correction at optimal DSVA velocity on the
right. Conflicting moveout is clearly visible, presumably
resulting from incomplete removal of multiply reflected
energy. DSVA attempts to flatten the entire gather, and
reaches a compromise, undercorrecting primary events
and overcorrecting multiples - this is its generic behaviour
in the presence of conflicting moveout (Gockenbach and
Symes, 1999). Figure 5 shows RMS velocities derived
from the optimized interval velocities, overplotted on a
conventional velocity spectrum from midpoints at the
three PIGrid “well” locations. This plot gives another
index of velocity fidelity achievable by DSVA in the
presence of coherent noise. Finally Figure 6 shows a
densely sampled grey scale plot of the estimated velocity,
exhibiting structure consistent with that of the prestack
image (Figure 3).

Conclusions

We have described an NMO-based implementation of
DSVA and shown some 2D examples of its use. While less
flexible than DSVA based on migration, this implemen-
tation gives reasonable approximate interval velocities
from data that fall within its domain of applicability,
at low computational cost. The results underline the
importance of further research to incorporate more
physics, notably multiple reflections, into the theory and
practice of automatic velocity estimation.
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Fig. 1: Example 1: NMO-corrected CMPs
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Fig. 2: Example 1: CMP before (left) and after (right) predic-
tive deconvolution.

0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e(s

)

500 1000 1500 2000
trace number

Fig. 3: Example 2: NMO-corrected CMPs
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Fig. 4: Example 2: CMP before (left) and after (right) NMO
correction with DSVA velocity.

0

0.5

1.0

1.5

2.0

2.5

3.0

t
im

e
(
s
)

1500 2000 2500
RMS velocity(m/s)

0

0.5

1.0

1.5

2.0

2.5

3.0

t
im

e
(
s
)

1500 2000 2500 3000
RMS velocity(m/s)

0

0.5

1.0

1.5

2.0

2.5

3.0

t
im

e
(
s
)

1500 2000 2500 3000
RMS velocity(m/s)

Fig. 5: Example 2: RMS velocities from DSVA interval veloc-
ities at three locations in line, plotted over velocity spectra at
corresponding CMPs.

0

0.5

1.0

1.5

2.0

2.5

3.0

de
pth

 (k
m)

5 10
offset (km)

1.5

2.0

2.5

3.0

Fig. 6: Example 2: 2D velocity estimated from NMO-based
DSVA.


