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Summary

Velocity analysis resolves relatively long scales of earth
structure, typically wavelengths larger than 500m. Mi-
gration produces images with length scales on the order
of 10’s of m. In between these two scale regimes lies
another, in which the resolution of velocity analysis is un-
certain and the energy of images is small to non-existent.
We propose a version of differential semblance based on
cross-correlations of seismic traces that is essentially in-
sensitive to the noise in seismic reflection data associated
with the middle scale in velocity heterogeneity.

Introduction

Seismic imaging techniques typically resolve the long-
scale component of velocity (wavelengths larger than
500m) via the process of velocity analysis, whereas
migration (i.e. linearized inversion) methods resolve
the high-frequency component of the velocity (the
reflectivity, typically on the order of 10’s of m). However,
standard techniques do not estimate the intermediate
scale in velocity heterogeneity. In fact, seismic data
simply do not contain any reliable information on this
intermediate scale structure (Jannane et al., 1989;
Claerbout, 1985). Although the scale gap indicates that
seismic data are less sensitive to the middle scales of
velocity than they are to the long or wavelength scales,
the nonlinearity of the seismic problem suggests than
the associated “energy” or (lack of) ”information” would
cascade between scales and pollute the estimation of
the long-scale component (velocity analysis) and the
quality of the other (migration). Because these middle
scales of velocity are neither imaged by migration nor
extracted from velocity analysis, they must be regarded
as random perturbations. In this paper, we are interested
in assessing the effects these random perturbations have
on the estimation of the long-scale component of velocity.

Borcea et al. (2002; 2003; 2004) have proposed various
statistically stable functions of random wavefields (solu-
tions of the wave equation when the coefficients are ran-
dom spatial fields). Their definition of “statistically sta-
ble” is asymptotic: a function is statistically stable if
random fluctuations of size (suitably measured) ε lead to
fluctuations in the function values of size εp with p > 1,
i.e. the variance of the function is asymptotically negli-
gible compared to the random coefficients. It should be
noted that the wavefield itself is never statistically stable.
However, Borcea et al. (2002; 2003; 2004) have shown
that cross-correlations of neighboring time traces are sta-
tistically stable under various circumstances. The im-
portance of using cross-correlations of neighboring traces
stems from the fact that doing so achieves the desired ran-

dom phase cancellations which are ultimately responsible
for the statistical stability.

In this paper, we show that cross-correlations of (reflec-
tion) seismic data do contain moveout information, and
suggest a functional of the differential semblance type
that can be optimized to reconstruct the background
medium from them (Carazzone and Symes, 1991; Symes,
1993; Symes, 1998). Because the functional uses interfer-
ometric data, it is therefore stable in the sense explained
above. Theoretical justification of this assertion required
an extension of the results of Borcea et al. (2002; 2003;
2004), which will be reported elsewhere. The version de-
scribed in this abstract is realized using convolutional lay-
ered modeling, as it simplifies both theory and numerics.
However, extension to more complex models can be done,
at the expense of more complex mathematical machinery.

The next section briefly presents the well-known convolu-
tional model, which provides a simple framework within
which to pose the velocity analysis problem (Symes,
1999). The following section contains the description of
the differential semblance functional. We then proceed to
show the success of the method, using a synthetic data
example created from the Marmousi model. We end the
paper with a brief indication of how the method may be
generalized to more complex models.

The convolutional model for layered media

For both theoretical and numerical results presented
in this paper, we will use the asymptotic linearized
model of scattering from a layered medium. The most
convenient form of this model parametrizes velocity and
reflectivity by vertical 2-way travel time t0 rather than
depth z and uses the interval velocity v(t0) as the basic
velocity representation. For a particular choice v∗ of v
and reflectivity r∗, the noise-free convolutional model is:

d
∗(t, h) = r

∗ (T ∗

0 (t, h)) (1)

Here t represents the time, h is the half-offset, and d(t, h)
is a common midpoint gather. The time-to-depth conver-
sion function T0(t, h) is related to the 2-way traveltime
function T (t0, h) by:

T0 (T (t0, h), h) = t0, T (t0, h) =

q

t2
0
+ h2v−2

RMS(t0) (2)

Here vRMS is the RMS velocity profile corresponding to
v. Note that we explicitly use the hyperbolic moveout
approximation to the traveltime function. We also ig-
nored filtering by the source wavelet, which gives the
convolutional model its name, and the amplitude factors.
The goal of velocity analysis is to determine moveout,
which neither wavelet nor amplitude variation with offset
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strongly affect. For a complete derivation of the con-
volutional model from the wave equation, see Stolt and
Weglein (1985).

Differential semblance principle

The NMO operator, obtained from (1) by a simple inverse
change of variables, corrects a CMP gather d(t, h) for
offset-dependent delay in the arrival times according to
the formula:

r(t0) ' d (T (t0, h), h) (3)

If the data are model-consistent (noise free) or differ from
noise free data by slowly varying amplitudes, then:

∂

∂h
d (T (t0, h), h) ' 0

In other words, if d(t, h) ' d∗(t, h), then the mean-square
of the above expression, i.e.

ZZ

dhdt0

˛

˛

˛
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∂h
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∂d
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˛

˛

˛

2

should be approximately minimized when v = v∗. Chang-
ing variables from t0 to t, i.e. setting t0 = T0(t, h),
we see that standard differential semblance optimization
amounts to minimizing the functional:

ZZ

dh dt

˛

˛

˛
p(t, h)

∂d

∂t
(t, h) +

∂d
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(t, h)

˛

˛

˛
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where we omitted the Jacobian factor, for simplicity. Here
p(t, h) denotes the ray parameter, i.e. the slowness of the
ray passing offset h at time t:

p(t, h) =
∂T

∂h
(T0(t, h), h) (4)

The formulation of standard differential semblance also
includes a smoothing operator used to keep the spectrum
of the differential semblance output comparable to that
of the data (this operator annihilates the effect of differ-
entiating the data, which enhances high-frequency con-
tent). To mimic this behavior, we will use time-integrated
traces. Therefore the functional we propose to minimize
has the form:

J [v] = 1

2

ZZ

dh dt

˛

˛

˛p(t, h)d(t, h) + b(t, h)
˛

˛

˛

2

(5)

where we have set:

b(t, h) ≡

Z t

−∞

∂d

∂h
(·, h), (6)

In case the data are model-consistent, i.e. d(t, h) '
d∗(t, h), then a short computation using (1), (2) and (6)
shows that:

p(t, h)d(t, h) + b(t, h) ≡ [p(t, h) − p
∗(t, h)] d(t, h)

Hence we obtain the equivalence:

J [v] ≡ 1

2

ZZ

dhdt |d(t, h)|2 [p(t, h) − p
∗(t, h)]

2
(7)

That is, the functional J [v] essentially measures the mis-
match of event slowness weighted by data power. We can
find another interpretation of the functional by expanding
the integrand in (5) as follows:

I(h) =

Z

dt p
2(t, h)d2(t, h)+2p(t, h)d(t, h)b(t, h)+b

2(t, h)

Each term in the above expression may be viewed as a
weighted cross-correlation. Indeed, defining

I1(t, h, h
′) =

Z

ds p
2(s, h)d(t + s, h)d(s, h′)

I2(t, h, h
′) =

Z

ds p(s, h)d(t + s, h)

»Z s

−∞

d(·, h′)

–

I3(t, h, h
′) =

Z

ds

»Z s

−∞

d(t + ·, h)

– »Z s

−∞

d(·, h′)

–

then clearly we have the following equivalence:

I(h) ≡

»

I1 + 2
∂I2

∂h′
+

∂2I3

∂h∂h′

–

t=0,h′=h

(8)

Hence the functional defined in (5) explicitly uses in-
finitesimal (weighted) cross-correlations of seismic traces.
Because cross-correlations of nearby seismic traces with
slowly-varying weights are stable against middle-scale
fluctuations in the medium, the functional is stable
against these fluctuations as well. The velocity analysis
algorithm consists of determining the background model
v such that the functional J [v] is minimized. Because the
ray slowness p is locally a smooth function of v, J [v] is a
smooth function of v as well, and can therefore be opti-
mized by local optimization techniques. A similar analysis
would show that the gradient ∇J [v] is also stable against
middle-scale fluctuations. Thus the velocity analysis al-
gorithm is statistically stable, and should therefore yield
kinematically accurate background velocities despite the
fluctuations at the middle scale.

Synthetic Data Trials

The trials reported in this section are based on 2-D syn-
thetic data sets created using linearized acoustic
simulations (Born modeling). We created a model with
three distinct scales of velocities. First, we extracted a
1-D velocity profile from the well known Marmousi model
(Bourgeois et al., 1991). The background velocity was
chosen as the linear average of this profile. Subtraction
of this linear background from a smoothed version of the
original profile (obtained by convolution with a kernel of
smoothing width equal to 100m) resulted in a reflectivity
varying on a scale of about 100m. Both the background
model and the reflectivity were then extended to 2-D



Velocity analysis from interferometric data

layered models. The middle scale fluctuations were
generated as realizations of a random process with
a Gaussian correlation function (for its smoothness
properties) having a characteristic correlation length of
about 300m, thus creating Gaussian blobs of about 300m
in size. The strength of the fluctuations was about 6%
that of the background.

Figure 1 (top panel) shows the resulting CMP obtained
when no fluctuations are added in the background. We
used partially irregular grids (Dussaud and Symes, 2005)
to describe the interval velocity as function of depth z.
In this case, only two nodes were used as the background
model is linear. The estimated reflectivity amounts to
essentially NMO-corrected data in this setting. Figure
1 (middle panel) shows that this gather is almost per-
fectly flat. Figure 1 (bottom panel) displays the estimated
RMS velocity overplotted on a standard velocity spectrum
(produced using Seismic Unix’ suvelan utility). The esti-
mated RMS velocity passes directly through the velocity
spectrum peaks corresponding to the reflectors.

Figure 2 (top panel) shows a typical CMP obtained for a
particular realization of the random medium when mid-
dle scale fluctuations are added to the background model.
The effect of the fluctuations can be measured by ran-
dom phase shifts in the data. Figure 2 (middle panel)
shows the inverted reflectivity. The estimated RMS veloc-
ity, shown in the bottom panel, appears to have changed
little from the case illustrated on Figure 1, suggesting
that the algorithm was not sensitive to the fluctuations
in individual trace arrival times.

Conclusions

This paper has demonstrated an (automatic) velocity
analysis algorithm based on cross-correlations of seismic
data which is essentially insensitive to the noise in
seismic reflection data associated with the middle scale
in velocity heterogeneity. This paper represents the
preliminary report of an ongoing project. Testing is
underway to quantitatively verify the statistical stability
of differential semblance and the associated velocity
estimates in the asymptotic, statistical sense specified by
Borcea et al. (2002; 2003; 2004). Differential semblance
has been applied with success to estimation of later-
ally heterogeneous velocity models, using for example
Kirchhoff migration as the underlying imaging engine,
rather than NMO (Chauris and Noble, 2001). Extension
of the theory predicting statistical stability of trace
cross-correlations in the laterally heterogeneous setting
would then suggest that differential semblance 2D and
3D velocity macro-model estimates might inherit such
stability.
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Fig. 1: Top: CMP. Middle: Inverted reflectivity at optimal
DSO velocity. Bottom: Estimated RMS velocity (thick line)
superimposed on velocity spectrum

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

tim
e 

(s
)

1.065 1.068 1.071
x104trace number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

tim
e 

(s
)

1.065 1.068 1.071
x104trace number

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

tim
e 

(s
)

1400 1600 1800 2000 2200 2400 2600 2800 3000
RMS velocity (m/s)

Fig. 2: Top: CMP . Middle: Common image gather at optimal
velocity. Bottom: Estimated RMS velocity superimposed on
velocity spectrum


