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Agenda, Morning

0845 Welcome and logistical announcements

0900 J.-L. Qian, UCLA: Recent developments in level set im@shfor traveltime
and related computations

0945 C. C. Stolk, U. Twente: Aspects of wave equation imaging

1030 break

1040 E. Dussaud, Explicit extrapolators and common azimmigjnation

1110 W. W. Symes and F.-C. Gao, Rice U: HOCIGs and VOCIGs veavay re-
verse time migration

1130 E. Dussaud, Rice U: A sparse, bound-respecting panaatetn of velocities
1140 W. W. Symes and J. Li, Rice U: NMO-based DSO: implementatnd initial
noise studies




Agenda, Afternoon

1200 Lunch, Cohen House

1300 E. Dussaud, Rice U: Velocity analysis in the presencamoértainty
1320 P. Shen, Rice U and Total: Wave equation velocity amsalys

1350 W. W. Symes, Rice U: Velocity analysis and nonlineaerse scattering
1420 Discusson: immediate plans, future directions

1500 Adjournment




NMO-Based DSO

Objectives:

e automatic velocity analysis accounting for mild lateraldnegeneity
e accommodate both 2D and 3D data in standard input format Y3EG

e produce velocity models idepthwith controlled resolution, using PIGrid data
structure

Working version: uses hyperbolic traveltimes, estimagesropic P-wave velocity




NMO-Based DSO - Fundamentals

d(t, h, m) = CMP gathersh, m = (3D) half-offset, midpointy = v(z, m) midpoint
dependent interval velocity. NMO = layered medium appration to migration:
dNMO [U] (to, h7 m) - d(t[’l}] (t07 h>7 h7 m)

Differential semblance measures flatness of nmo-corréckég:

slvl(to, h, m) = %dNMQ[U] (to, h, m)

Differential semblance optimization:

minv {JDSO v, d Z ‘ to, }

to,h,m




NMO-Based DSO - Implementation

e change of variables— t, by local cubic interpolation smooth enough (barely)
for differentiation w.r.t.v.

e Use Fortran for basic numerical kernels. Motivation: alallty of automatic
differentiation (TAMC) to produce derivatives and adjoints required fori-opt
mization.

e kernels wrapped in C++ to produ&tandard Vector LibraryOper at or sub-
classes

e SU and SEP data structures implemented as Space, Dat aCont ai ner
subclasses

e linked to SVL implementation of limited-memory quasi-Nentoptimization
algorithm to produce finedMOOpt . x driver.

e SU-style self-doc provided.




NMO-Based DSO - Limitations

e Accounts only for isotropic P-wave (or single velocity) neowut
e Accounts only foprimary reflection datdrom (near-)layered structure

e Sensitive to coherent noise: multiple reflections, modeversions, etc. (see
WWS and Gockenbach, SEG 99)

Jintan Li MA project: assess accuracy, ease of use, influehgarious types of
noise using synthetic and field data




NMO-Based DSO - Future

e Will remain a tool for inversion ofrimaries onlydata - dependent on multiple
suppression technology

e anisotropy accommodated through (a) approximate highraalrections to hy-
perbolic TT, (b) ray trace TT (also interesting for isotmmiase) via eikonal
solvers

e multiple modes handledithout mode separatiothroughconcatenated annihi-
lators (see TRIP annual report 2000).

e for multiple reflections, we will pursue another path...




HOCIGs and VOCIGs

Biondi-Shan 2002, TRIP 2003, Biondi-Symes 2004: Revdaree-shot-geophone
(“S-G”) migration permits use of turning rays in prestaclammg.

This talk:

e Fuchun Gao: how to produce offset image gathers usetgiency domaitwo-
way migration, and their focussing property when DSR coodiholds;

e in order to avoid imaging ambiguity when rays turn, imagameeémustinclude
nonhorizontal offsets;

e midpoint dip filtering produces artifact-free horizontaldavertical offset CIGs
- reduce cost by decimating midpoints, avoid midpoint digefihg, and still
eliminate artifacts;

e Details: papeReverse time shot-geophone migratitRT SGM”)




Kinematics

Phase space description: reflector lnasition (y,, y,) anddip (k,, k).

Similarly, reflection event in data at locatior,, ¢; x,) and dipw(p,, 1; ps). Event
slownessep,., p, determined by data for "true 3D”, otherwise many data-caibje
slownesses (eg. for idealized streamer geometry).

Kinematic Relation of S-G modeling/migration: reflection evet,, t; x,), w(pr, 1; Ps)
occurs< reflector exists ay,, v, k,, k, and

e a ray begins ak, with takeoff slownesg, and reacheg, with arrival slowness
ks /w, Intimet,;

e a ray begins ak, with takeoff slownesg, and reacheg, with arrival slowness
k,/w, Intimet,;

ot,+t, =t




Kinematics

t, +t,=t

t, +t=t

X (t), =P (t)
=y.—k £
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= Ys- _ks 'bos

Kinematic relation of S-G modeling/migration
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Too many image points!

Note: for any given reflection event in dataany corresponding (double) reflec-
tors: all points on rays from source, receiver with correct tatak.

= gross imaging ambiguity

The "traditional” fix: (1) DSR assumption, i.e. no turning/sa(2) "sunken offset”
vectorhorizontal
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DSR, good = focus atn =0

Xss P s - Xp Pr

X (t)=X(t)

Pt)—-Pt)Hllk/w

Kinematic relation of S-G modeling/migration + DSR + homtal offset: NO
IMAGING AMBIGUITY (Stolk-deHoop 2001)
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Q. Why drop DSR?

A. Because in complex structure, rays turn.

Q. Why drop horizontal offsets? A. Because reflectors stirest may be vertical
or near-vertical, and then horizontal offset images wilsbeearedi.e. ambiguous
reflector locations!)

Nonvertical reflector- total traveltime determines reflection point uniquely when
velocity is correct andhorizontaloffset assumed.

Vertical reflector=- many different (double) reflectors correspond to singlespiaf
reflector, all having same traveltimes and horizontal offse
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Nonvertical Reflector

Nonvertical reflectort, + ¢, = t,. + ¢/, but depths cannly be the same at one point
(which must be the physical reflection point, if velocity mect, by S-deH).
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Vertical Reflector

(Near) vertical reflectort, +t; = t.+t., and depths can be the same at a continuum
of points, besides the physical reflection poist reflector is smeared, location
ambiguous.
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Horizontal and vertical offsets via filtering

Suggested approach (differs from Biondi-Symes 2004):terel® and VO image
volumes, therfilter in midpoint dip(i.e. inx, z, not in k). remove near-vertical
reflector components from HO volume, near-horizontal redlecomponents from
VO volume.

See paper RTSGM for details.

Difficulty: computation of (HO) image volume

I(x,z,h) = /dt/dazsu(azs,az — h, z, t)v(xs, x + h, 2,t)

requiresN;N,N, N, N. flops -and this can overwhelm the cost of solving the wave
equationif all axes are sampled densely!

Reasonable cost requirégcimation in midpointi.e. compute only a relatively
small number of HOCIGs, VOCIGs.
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Horizontal and vertical offsets via filtering

Decimated midpointss> can't filter in midpoint dip.

Alternate processhigh-cut filter

e HOCIGS Iinz
e VOCIGSs Inz

Also removes horizontal dips from HOCIGs, vertical dipsmfirt? OCIGs, but car-
ried outper midpoint i.e. fixed x for HOCIGs, fixed z for VOCIGs - compatible

with decimated midpoints.
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Example

Distance (m)

Depth (m)

50 —

—— \ \ —
I I I
3500 4000 4500 5000 5500 6000 6500 7000 7500
velocity (m/s)

Velocity model with velocity increasing with depth, genang turning rays, and
vertical reflector.
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Example

Horizontal (m)

Offset (m) (35m) ~ Offset{m) (30m)

Image Intensity

VOCIGs (z = 30 m, 35 m) are artifact-free - no imaging ambiguity
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Example
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HOCIG at reflector midpoint has substantial low freq compiin@mearing
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Example

Offset(m)(10m)
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Filtered HOCIG at reflector midpoint has horizontal dip / ldhgponents removed.
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Focussing property of HO/VO image volume

Regard prestack image as
o filtered HOCIGs + VOCIGs

Then: at correct velocity, energy is focussed at zero offsdétoth HOCIGs and
VOCIGs within an offset “corridor” of widthh,,;, - depends on amount of ray
bending, qualitative version of TIC assumption.

Proof: see RTSGM.

Note that apparently image artifacts may exist at large ghadfsets, in contrast to
DSR case. Future project: illustrate the existence, exiestich artifacts, explore
implications for VA.
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Velocity Analysis and Nonlinear Inverse
Scattering

Overview of past, present, planned TRIP efforts on velesiti

e A common framework for VA
e Differential semblance
e Nonlinear inverse scattering via an analogue of standard MV

e A nonlinear version of S-G MVA
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A common framework for VA
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Constant Density Acoustic Model

acoustic potentiaki(x,t), sound velocity:(x) related to pressurg and particle
velocity v by

ou 1
p = 5 VvV = qu

Second order wave equation for potential

(c(iyg; N V2> u(x,t) = w(t)d(x — x;)

plus initial, boundary conditions.

Forward map: Flc] =
manifold

ply, whereY = {(t,x,,x,) : 0 <t <T,...} is acquisition

25



(Partly) linearized inverse scattering

Formally, Flv(1+r)| ~ Flv] + F|v|r whereF[-] is linearized forward majplefined
by

1 0° ) r(x) 0°G
(U(X)20t2 -V ) 0G (x4, X, 1) = 22}2(}(> 572 (x5, X, 1)

Flulr = 8;—?

Y

e basis of most practical data processing procedures.
e v is no more known than, inverse problem fopv, r| still nonlinear!

e linearization error contains many effects observable il fiata, notablymul-
tiple reflections, which can be quite strong, or even dominagb-major open
Issue in this subject is how to go beyond linearization!!!
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Extended models

Extensiorof F'[v] (akaextended modglmanifold X and mapsg : £'(X) — &'(X),
Flv]: &(X) — D'(Y) so that
Flv]
&(X) — DY)
x 1 T i
&(X) — DY)

commutes, i.e.

Flv|xr = Fvlr

Extension is “invertible” iff F'[v] has aright parametrixG[v], i.e. I — F[v|G[v]is
smoothing, or more generally f[v|G|v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inedor y: ny = id.

NB: The trivial extension X = X, F' = F' - is virtually never invertible.
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Grand Example

The Standard Extended Modet: = X x H, H = offset range.

xr(x,h) = r(x), nr(x) = |—;[‘ [ dh7(x, h) (“stack”).

7 € range ofy < plots of 7(-, -, z, h) (“(prestack) image gathers”) appdat.
o 27 (x, h)
Fl|r(x,, X, t) / dx / dr G(x,%x,,t — 7)G(X, X, T) o)

(recallh = (x, — x;)/2)

NB: F'is “block diagonal” - family of operators (FIOs) paramegizbyh.
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Reformulation of inverse problem

Givend, find v so thatG[v]d € the range of.

Claim: if v is so chosen, thejm, r| solves partially linearized inverse problem with
r = nGlv]d.

Proof. Hypothesis means

Glvld = xr

for somer (whence necessarily= nG|v]d), SO

Q. E.D.
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Application: Migration Velocity Analysis

Membership in range of is visually evident

= Industrial practice: adjust parametersydfy hand(!) until visual characteristics
of R(x) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: writild is independent oh.

Practically: insist only thaf'[v]G[v] be pseudodifferential, so adjustuntil G[v]d
IS “smooth” inh.
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Differential semblance
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Automating the reformulation

SupposdV : £'(X) — D'(Z) annihilates range of:

X W
E'X) — &X) — D(Z) — 0

and moreovefV is bounded ord.?(X). Then

Tlo:d) = S| WGl

minimizedwhen[v, nG[v]d] solves partially linearized inverse problem.

Construction ofinnihilator of R(F[v]) (Guillemin, 1985):

d € R(Fv]) < Gld € R(x) & WG[v|d =0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

W= (I —A)2Vy,
(“differential semblance” - WWS, 1986)

1
W=1—-— | dh
|H|
(“stack power” - Toldi, 1985)

W =1—xF[]'Fu]

= minimizing J|v, d| equivalent to reduced least squares.
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But not many are good for much...

Sinceproblem is huge and data is noisynly W giving rise to differentiable, d —
J|v, d] are useful - must be able to use Newton!!! Once again, idealiz) = §().

Theorem (Stolk & WWS, 2003):v,d — J|v, d| smooth< W pseudodifferential.

l.e. only differential semblancgives rise to smooth optimization problem even
with noisy data.

Some theory, many successful numerical tests of diffeabséimblance using syn-
thetic and field data: WWS et al., Chauris & Noble 2001, Mul&etenKroode
2002. deHoop et al. 2004.
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Nonlinear inverse scattering via an analogue of
standard MVA
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A nonlinear common-shot extension

Simply replacer by an extension of-:

(s~ V) wet) = wlt)atx )

X, X4 )2 Ot?

plus initial, boundary conditions.

Extended Forward mapFc =
acquisition manifold

ply, whereY = {(t,x,,x,) : 0 <t < T,..}is

Extension map: same as for partially linearized commonektension, i.ex|[c|(x, x;) =
c(x).

Q: What replaces the right inverse of the linear extended op&ra
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Nonlinear common-shot DS

A. Inverse scattering, what else.

A em feasible modet at noise levet satisfies

17Te] = dll < elld]

Feasible points are easy to find, for extended models!!!

The natural common-shot differential semblance operatdr i= 0/0x;.

Nonlinear differential semblance, common shot version:

ming||Wel| subj [| 7] — d| < e|d]]
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Nonlinear common-shot DS - implementation

ming||Wel subj [| 7] — d| < e|d]]

Inequality constrained optimization problem, (relatijekasy access to feasible
points=- interior point method.

Classic IPM =log-barrier method (Fiacco & McCormack 1967): (1) initialize

penalty parametet; (2) while (not satisfied) (i) minimize log-barrier funcho
[Well* — plog(elld||* — || Fle] — dII*)

(i) when gradient of log-barrier function small enoughduee;: and do it again.

Status: log-barrier method implemented, being tested.t:Nesuple to already-
Implemented operator, gradient computations.
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A nonlinear version of S-G MVA
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Invertible Extensions

Beylkin (1985), Rakesh (1988): [itV?v|| -0 “not too big” (no caustics appear), then
the Standard Extension is invertible.

Nolan & WWS 1997, Stolk & WWS 2004: if V*v|| 0 is too big (caustics, multi-
pathing), Standard Extensionnst invertible! Not in any version - common offset,
common source, common scattering angle,...

Brings the whole program to a screeching halt, unless therether, inequivalent
extensions
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Claerbout’s extension

xr(x,h) = r(x)dé(h), n7(x) “="r(x,0) (Claerbout’s zero-offset imaging condition)

r € range ofy < plots of7(-, -, z, h) (i.e. image gathersappeafocussedth = 0

Flo]r(x,, X, t /dx/dh/dT (x+h, %, t—7)G(x—h,x,, T )27“(< ?>

This extension is invertible, assuming fijx, h) = 7(x, hy, h2)d(h3) (horizontal
offset only) and (ii) "DSR hypothesis”: waves propagate mo @own, not side-
ways (“rays do not turn”) [Stolk-DeHoop 2001] and sometimader more general
conditions [RTSGM].
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Differential Semblance for Claerbout’s Extension

Wr(x, h) = hi(x, h), Jv,d] = %HWG[U]CZH?

Same smoothness properties as DS for Standard Extension.

P. Shen (2004): implementation, optimization via quaswide algorithm, syn-
thetic and field data.

Conclusion: successfully estimatesn settings (strong refraction) in which Stan-
dard Extension based DS fails.
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Claerbout’s Extension as a linearization

Write differential equation for'[v], by applying wave operator to both sides of
integral representatior? [v|r = ju|y where

v_Qa—Q — V%) du(x, x,,t) = / dh2r(x —h,h)v?(x — h)aQ—G(X — 2h, x4, 1)
@t2 ) “™S9 T = ) @t2 ) “XS9
Observethat this equation describes the linearization of the syste
0%
—2 2 _
V [—8t2] — Vu(x,x,,t) = w(t)d(x — Xy),

In which the “velocity” V' is anoperator. formally,
Vw(x) = / dh Ky (x —h, h)w(x — 2h)
H

and the linearization takes placelawith Ky (x,h) = v(x)d(h) = yv(x, h).
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The Nonlinear Claerbout Extension

That is, you can view Claerbout’s extension of the linearigeattering problem as
the linearization of an extension of the original scattggpnoblem:

v [8t2] Vou(x, X, t) = w(t)d(x — Xy),
wherev is the operator of multiplication by the positive functioyversus
V2 gl — Vu(x, x,,t) = w(t)d(x — x,)
at2 ) “XSy _ S/
with self-adjoint positivé/.

This generalized nonlinear scattering problem makes sdnde Lions showed in
the late '60s how to demonstrate the well-posedness of tti@ value problem for
operators like the above, with self-adjoint positive opa&raoefficients [also Stolk
2000].
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Extended Inverse Scattering

The extended inverse scattering problem takes the pladeafght inverse map:
of the linear Claerbout extension: define the¢ended forward mag by F[V] =
uly, whereu solves

0%

V-2 [@] — V2u(x, X5, t) = w(t)d(x — x),

plus appropriate initial and boundary conditions. Giverommmal noise levet, an

e-solution of the extended inverse scattering problem issitige self-adjointl” so
that

|F[V] = dl] < elld] (1)

In itself, this problem is grossly underdetermined - so tiss & constraint!
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Nonlinear Differential Semblance

Natural differential semblance op for Claerbout extensign = multiply by h.
Thenonlinear differential semblangagroblem is: givend, ¢, find V' to minimize

miny [|[W Ky |[*subj | F[V] — d|| < e||d|

where Ky Is the distribution kernel o'

Many open guestions to be studied in near future, for ingtanc

e What is a good class of operators? Must have well-behavettlgtr
e How to sensibly define the norm o# Ky,

e Economical implementation?
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