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Agenda, Morning

0845 Welcome and logistical announcements
0900 J.-L. Qian, UCLA: Recent developments in level set methods for traveltime
and related computations
0945 C. C. Stolk, U. Twente: Aspects of wave equation imaging
1030 break
1040 E. Dussaud, Explicit extrapolators and common azimuthmigration
1110 W. W. Symes and F.-C. Gao, Rice U: HOCIGs and VOCIGs via two way re-
verse time migration
1130 E. Dussaud, Rice U: A sparse, bound-respecting parametrization of velocities
1140 W. W. Symes and J. Li, Rice U: NMO-based DSO: implementation and initial
noise studies
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Agenda, Afternoon

1200 Lunch, Cohen House
1300 E. Dussaud, Rice U: Velocity analysis in the presence ofuncertainty
1320 P. Shen, Rice U and Total: Wave equation velocity analysis
1350 W. W. Symes, Rice U: Velocity analysis and nonlinear inverse scattering
1420 Discusson: immediate plans, future directions
1500 Adjournment
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NMO-Based DSO

Objectives:

• automatic velocity analysis accounting for mild lateral heterogeneity

• accommodate both 2D and 3D data in standard input format (SEGY)

• produce velocity models indepthwith controlled resolution, using PIGrid data
structure

Working version: uses hyperbolic traveltimes, estimates isotropic P-wave velocity
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NMO-Based DSO - Fundamentals

d(t, h,m) = CMP gathers,h,m = (3D) half-offset, midpoint,v = v(z,m) midpoint
dependent interval velocity. NMO = layered medium approximation to migration:

dNMO[v](t0, h,m) = d(t[v](t0, h), h,m)

Differential semblance measures flatness of nmo-correctedCMP:

s[v](t0, h,m) =
∂

∂h
dNMO[v](t0, h,m)

Differential semblance optimization:

minv







JDSO[v, d] ≡
∑

t0,h,m

|s[v](t0, h,m)|2







4



NMO-Based DSO - Implementation

• change of variablest 7→ t0 by local cubic interpolation- smooth enough (barely)
for differentiation w.r.t.v.

• use Fortran for basic numerical kernels. Motivation: availability of automatic
differentiation (TAMC) to produce derivatives and adjoints required for opti-
mization.

• kernels wrapped in C++ to produceStandard Vector LibraryOperator sub-
classes

• SU and SEP data structures implemented as SVLSpace, DataContainer
subclasses

• linked to SVL implementation of limited-memory quasi-Newton optimization
algorithm to produce finalNMOOpt.x driver.

• SU-style self-doc provided.
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NMO-Based DSO - Limitations

• Accounts only for isotropic P-wave (or single velocity) moveout

• Accounts only forprimary reflection datafrom (near-)layered structure

• Sensitive to coherent noise: multiple reflections, mode conversions, etc. (see
WWS and Gockenbach, SEG 99)

Jintan Li MA project: assess accuracy, ease of use, influenceof various types of
noise using synthetic and field data
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NMO-Based DSO - Future

• will remain a tool for inversion ofprimaries onlydata - dependent on multiple
suppression technology

• anisotropy accommodated through (a) approximate high-order corrections to hy-
perbolic TT, (b) ray trace TT (also interesting for isotropic case) via eikonal
solvers

• multiple modes handledwithout mode separationthroughconcatenated annihi-
lators (see TRIP annual report 2000).

• for multiple reflections, we will pursue another path...
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HOCIGs and VOCIGs

Biondi-Shan 2002, TRIP 2003, Biondi-Symes 2004: Reverse-time shot-geophone
(“S-G”) migration permits use of turning rays in prestack imaging.

This talk:

• Fuchun Gao: how to produce offset image gathers usingfrequency domaintwo-
way migration, and their focussing property when DSR condition holds;

• in order to avoid imaging ambiguity when rays turn, image volumemustinclude
nonhorizontal offsets;

• midpoint dip filtering produces artifact-free horizontal and vertical offset CIGs
- reduce cost by decimating midpoints, avoid midpoint dip filtering, and still
eliminate artifacts;

• Details: paperReverse time shot-geophone migration(“RTSGM”)
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Kinematics

Phase space description: reflector haslocation(yr,ys) anddip (kr,ks).

Similarly, reflection event in data at location(xr, t;xs) and dipω(pr, 1;ps). Event
slownessespr,ps determined by data for ”true 3D”, otherwise many data-compatible
slownesses (eg. for idealized streamer geometry).

Kinematic Relation of S-G modeling/migration: reflection event(xr, t;xs), ω(pr, 1;ps)
occurs⇔ reflector exists atyr,ys,kr,ks and

• a ray begins atxs with takeoff slownessps and reachesys with arrival slowness
ks/ω, in time ts;

• a ray begins atxr with takeoff slownesspr and reachesyr with arrival slowness
kr/ω, in time tr;

• ts + tr = t
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Kinematics
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Kinematic relation of S-G modeling/migration
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Too many image points!

Note: for any given reflection event in data,many corresponding (double) reflec-
tors: all points on rays from source, receiver with correct totaltime.

⇒ gross imaging ambiguity

The ”traditional” fix: (1) DSR assumption, i.e. no turning rays; (2) ”sunken offset”
vectorhorizontal
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DSR, goodv ⇒ focus ath = 0
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Kinematic relation of S-G modeling/migration + DSR + horizontal offset: NO
IMAGING AMBIGUITY (Stolk-deHoop 2001)
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Q. Why drop DSR?

A. Because in complex structure, rays turn.

Q. Why drop horizontal offsets? A. Because reflectors structures may be vertical
or near-vertical, and then horizontal offset images will besmeared(i.e. ambiguous
reflector locations!)

Nonvertical reflector⇒ total traveltime determines reflection point uniquely when
velocity is correct andhorizontaloffset assumed.

Vertical reflector⇒ many different (double) reflectors correspond to single physical
reflector, all having same traveltimes and horizontal offset.
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Nonvertical Reflector

rt’

t’

t , t

s

r s

Nonvertical reflector:tr + ts = t′r + t′s, but depths canonlybe the same at one point
(which must be the physical reflection point, if velocity is correct, by S-deH).
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Vertical Reflector

s

t , tr s

t’r
t’

(Near) vertical reflector:tr +ts = t′r +t′s, and depths can be the same at a continuum
of points, besides the physical reflection point⇒ reflector is smeared, location
ambiguous.
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Horizontal and vertical offsets via filtering

Suggested approach (differs from Biondi-Symes 2004): create HO and VO image
volumes, thenfilter in midpoint dip(i.e. in x, z, not in h): remove near-vertical
reflector components from HO volume, near-horizontal reflector components from
VO volume.

See paper RTSGM for details.

DIfficulty: computation of (HO) image volume

I(x, z, h) =

∫

dt

∫

dxsu(xs, x − h, z, t)v(xs, x + h, z, t)

requiresNtNsNxNhNz flops -and this can overwhelm the cost of solving the wave
equationif all axes are sampled densely!

Reasonable cost requiresdecimation in midpoint, i.e. compute only a relatively
small number of HOCIGs, VOCIGs.
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Horizontal and vertical offsets via filtering

Decimated midpoints⇒ can’t filter in midpoint dip.

Alternate process:high-cut filter

• HOCIGs inz

• VOCIGs inx

Also removes horizontal dips from HOCIGs, vertical dips from VOCIGs, but car-
ried outper midpoint, i.e. fixed x for HOCIGs, fixed z for VOCIGs - compatible
with decimated midpoints.
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Example
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Velocity model with velocity increasing with depth, generating turning rays, and
vertical reflector.
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Example
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VOCIGs (z = 30 m, 35 m) are artifact-free - no imaging ambiguity
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HOCIG at reflector midpoint has substantial low freq component - smearing
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Example
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Filtered HOCIG at reflector midpoint has horizontal dip / LF components removed.
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Focussing property of HO/VO image volume

Regard prestack image as

• filtered HOCIGs + VOCIGs

Then: at correct velocity, energy is focussed at zero offsetin both HOCIGs and
VOCIGs within an offset “corridor” of widthhmin - depends on amount of ray
bending, qualitative version of TIC assumption.

Proof: see RTSGM.

Note that apparently image artifacts may exist at large enough offsets, in contrast to
DSR case. Future project: illustrate the existence, extentof such artifacts, explore
implications for VA.
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Velocity Analysis and Nonlinear Inverse

Scattering

Overview of past, present, planned TRIP efforts on velocities

• A common framework for VA

• Differential semblance

• Nonlinear inverse scattering via an analogue of standard MVA

• A nonlinear version of S-G MVA
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A common framework for VA
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Constant Density Acoustic Model

acoustic potentialu(x, t), sound velocityc(x) related to pressurep and particle
velocityv by

p =
∂u

∂t
, v =

1

ρ
∇u

Second order wave equation for potential
(

1

c(x)2
∂2

∂t2
−∇2

)

u(x, t) = w(t)δ(x − xs)

plus initial, boundary conditions.

Forward map:F [c] ≡ p|Y , whereY = {(t,xr,xs) : 0 ≤ t ≤ T, ...} is acquisition
manifold.
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(Partly) linearized inverse scattering

Formally,F [v(1 + r)] ' F [v] +F [v]r whereF [·] is linearized forward mapdefined
by

(

1

v(x)2
∂2

∂t2
−∇2

)

δG(xs,x, t) = 2
r(x)

v2(x)

∂2G

∂t2
(xs,x, t)

F [v]r =
∂δG

∂t

∣

∣

∣

∣

Y

• basis of most practical data processing procedures.

• v is no more known thanr, inverse problem for[v, r] still nonlinear!

• linearization error contains many effects observable in field data, notablymul-
tiple reflections, which can be quite strong, or even dominant -so major open
issue in this subject is how to go beyond linearization!!!
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Extended models

Extensionof F [v] (akaextended model): manifoldX̄ and mapsχ : E ′(X) → E ′(X̄),
F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r

Extension is “invertible” iffF̄ [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v]is
smoothing, or more generally if̄F [v]Ḡ[v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inverseη for χ: ηχ = id.

NB: The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.
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Grand Example

The Standard Extended Model:̄X = X × H, H = offset range.

χr(x,h) = r(x), ηr̄(x) = 1

|H|

∫

H dh r̄(x,h) (“stack”).

r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z,h) (“(prestack) image gathers”) appearflat.

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dτ G(x,xr, t − τ )G(x,xs, τ )
2r̄(x,h)

v2(x)

(recallh = (xr − xs)/2)

NB: F̄ is “block diagonal” - family of operators (FIOs) parametrized byh.
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Reformulation of inverse problem

Givend, find v so thatḠ[v]d ∈ the range ofχ.

Claim: if v is so chosen, then[v, r] solves partially linearized inverse problem with
r = ηḠ[v]d.

Proof: Hypothesis means

Ḡ[v]d = χr

for somer (whence necessarilyr = ηḠ[v]d), so

d ' F̄ [v]Ḡ[v]d = F̄ [v]χr = F [v]r

Q. E. D.
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Application: Migration Velocity Analysis

Membership in range ofχ is visually evident

⇒ industrial practice: adjust parameters ofv by hand(!) until visual characteristics
of R(χ) satisfied - “flatten the image gathers”.

For the Standard Extended Model, this means: untilḠ[v]d is independent ofh.

Practically: insist only that̄F [v]Ḡ[v] be pseudodifferential, so adjustv until Ḡ[v]d

is “smooth” inh.
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Differential semblance
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Automating the reformulation

SupposeW : E ′(X̄) → D′(Z) annihilates range ofχ:

χ W
E ′(X) → E ′(X̄) → D′(Z) → 0

and moreoverW is bounded onL2(X̄). Then

J [v; d] =
1

2
‖WḠ[v]d‖2

minimizedwhen[v, ηḠ[v]d] solves partially linearized inverse problem.

Construction ofannihilatorof R(F [v]) (Guillemin, 1985):

d ∈ R(F [v]) ⇔ Ḡ[v]d ∈ R(χ) ⇔ WḠ[v]d = 0
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Annihilators, annihilators everywhere...

For Standard Extended Model, several popular choices:

•

W = (I − ∆)−
1
2∇h

(“differential semblance” - WWS, 1986)

•

W = I −
1

|H|

∫

dh

(“stack power” - Toldi, 1985)

•

W = I − χF [v]†F̄ [v]

⇒ minimizingJ [v, d] equivalent to reduced least squares.
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But not many are good for much...

Sinceproblem is huge and data is noisy, onlyW giving rise to differentiablev, d 7→

J [v, d] are useful - must be able to use Newton!!! Once again, idealizew(t) = δ(t).

Theorem (Stolk & WWS, 2003):v, d 7→ J [v, d] smooth⇔ W pseudodifferential.

i.e. only differential semblancegives rise to smooth optimization problem even
with noisy data.

Some theory, many successful numerical tests of differential semblance using syn-
thetic and field data: WWS et al., Chauris & Noble 2001, Mulder& tenKroode
2002. deHoop et al. 2004.
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Nonlinear inverse scattering via an analogue of

standard MVA

35



A nonlinear common-shot extension

Simply replaceF̄ by an extension ofF :
(

1

c̄(x,xs)2
∂2

∂t2
−∇2

)

u(x, t) = w(t)δ(x − xs)

plus initial, boundary conditions.

Extended Forward map:̄F [c̄] ≡ p|Y , whereY = {(t,xr,xs) : 0 ≤ t ≤ T, ...} is
acquisition manifold.

Extension map: same as for partially linearized common shotextension, i.e.χ[c](x,xs) =

c(x).

Q: What replaces the right inverse of the linear extended operator?
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Nonlinear common-shot DS

A: Inverse scattering, what else.

A em feasible model̄c at noise levelε satisfies

‖F̄ [c̄] − d‖ ≤ ε‖d‖

Feasible points are easy to find, for extended models!!!

The natural common-shot differential semblance operator isW = ∂/∂xs.

Nonlinear differential semblance, common shot version:

minc̄‖Wc̄‖ subj ‖F̄ [c̄] − d‖ ≤ ε‖d‖
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Nonlinear common-shot DS - implementation

minc̄‖Wc̄‖ subj ‖F̄ [c̄] − d‖ ≤ ε‖d‖

Inequality constrained optimization problem, (relatively) easy access to feasible
points⇒ interior point method.

Classic IPM =log-barrier method (Fiacco & McCormack 1967): (1) initialize
penalty parameterµ; (2) while (not satisfied) (i) minimize log-barrier function

‖Wc̄‖2 − µ log(ε‖d‖2 − ‖F̄ [c̄] − d‖2)

(ii) when gradient of log-barrier function small enough, reduceµ and do it again.

Status: log-barrier method implemented, being tested. Next: couple to already-
implemented operator, gradient computations.
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A nonlinear version of S-G MVA
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Invertible Extensions

Beylkin (1985), Rakesh (1988): if‖∇2v‖C0 “not too big” (no caustics appear), then
the Standard Extension is invertible.

Nolan & WWS 1997, Stolk & WWS 2004: if‖∇2v‖C0 is too big (caustics, multi-
pathing), Standard Extension isnot invertible! Not in any version - common offset,
common source, common scattering angle,...

Brings the whole program to a screeching halt, unless there are other, inequivalent
extensions.
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Claerbout’s extension

χr(x,h) = r(x)δ(h), ηr̄(x) “=” r̄(x,0) (Claerbout’s zero-offset imaging condition)

r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z, h) (i.e. image gathers) appearfocussedath = 0

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dh

∫

dτ G(x+h,xr, t−τ )G(x−h,xs, τ )
2r̄(x,h)

v2(x)

This extension is invertible, assuming (i)r̄(x,h) = r̂(x, h1, h2)δ(h3) (horizontal
offset only) and (ii) ”DSR hypothesis”: waves propagate up and down, not side-
ways (“rays do not turn”) [Stolk-DeHoop 2001] and sometimesunder more general
conditions [RTSGM].
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Differential Semblance for Claerbout’s Extension

Wr̄(x,h) = hr̄(x,h), J [v, d] =
1

2
‖WḠ[v]d‖2

Same smoothness properties as DS for Standard Extension.

P. Shen (2004): implementation, optimization via quasi-Newton algorithm, syn-
thetic and field data.

Conclusion: successfully estimatesv in settings (strong refraction) in which Stan-
dard Extension based DS fails.
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Claerbout’s Extension as a linearization

Write differential equation forF̄ [v], by applying wave operator to both sides of
integral representation:̄F [v]r = δū|Y where
(

v−2
∂2

∂t2
−∇2

)

δū(x,xs, t) =

∫

H

dh 2r̄(x − h,h)v−2(x − h)
∂2G

∂t2
(x − 2h,xs, t)

Observethat this equation describes the linearization of the system

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

in which the “velocity”V is anoperator: formally,

V w(x) =

∫

H

dhKV (x − h,h)w(x− 2h)

and the linearization takes place atV with KV (x,h) = v(x)δ(h) = χv(x,h).
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The Nonlinear Claerbout Extension

That is, you can view Claerbout’s extension of the linearized scattering problem as
the linearization of an extension of the original scattering problem:

v−2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

wherev is the operator of multiplication by the positive functionv, versus

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

with self-adjoint positiveV .

This generalized nonlinear scattering problem makes sense: J.-L. Lions showed in
the late ’60s how to demonstrate the well-posedness of the initial value problem for
operators like the above, with self-adjoint positive operator coefficients [also Stolk
2000].
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Extended Inverse Scattering

The extended inverse scattering problem takes the place of the right inverse map̄G
of the linear Claerbout extension: define theextended forward map̄F by F̄ [V ] =

u|Y , whereu solves

V −2

[

∂2u

∂t2

]

−∇2u(x,xs, t) = w(t)δ(x − xs),

plus appropriate initial and boundary conditions. Given a nominal noise levelε, an
ε-solution of the extended inverse scattering problem is a positive self-adjointV so
that

‖F̄ [V ] − d‖ ≤ ε‖d‖ (1)

In itself, this problem is grossly underdetermined - so use it as a constraint!
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Nonlinear Differential Semblance

Natural differential semblance op for Claerbout extension: W = multiply by h.
Thenonlinear differential semblanceproblem is: givend, ε, find V to minimize

minV ‖WKV ‖
2 subj ‖F̄ [V ] − d‖ ≤ ε‖d‖

whereKV is the distribution kernel ofV .

Many open questions to be studied in near future, for instance:

• What is a good class of operators? Must have well-behaved kernels!

• How to sensibly define the norm onWKV .

• Economical implementation?
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