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Motivation

e The choice of model space to describe the background velsaissential.
In particular, the model should:

— provide an accurate representation of the real mediumevioigling sparse, to
avoid oversampling in areas where the velocity varies olngjnsy.

—accomodate for explicit bounds on the velocity (e.g. stigagsues in finite
difference schemes).

— be adequate for seismic processing: in practice, the \tglskbuld be:

+x sampled on regular grids (e.g. finite difference schemes).

* twice continuously differentiable (high-frequency asyoigs assumption).




Proposed solution

We propose a combination of:

e a parsimonious parametrization of the velocity field, by nseaf user-specified
nodal values.

e a computationally efficient algorithm to smoothly approaie nodal velocity
values on regular grids, for models of arbitrary dimensions

Characteristics:

e the algorithm allows for used-defined smoothness.

e it also guarantees that bounds explicitly placed on the :iadepreserved by the
corresponding approximants.




Model parametrization
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Partially Irregular Grids (PIGrids). The velocities aresjied asw; ;. = v(vi, i;, Zijk)-




One-dimensional smooth approximation

The building block of the algorithm consists of:

e Piecewise linear interpolation on a regular grid.
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e Smoothing is accomplished via convolution with a trianglkrnel of the form:

2 (1 _ = _h h
vy = {1 77%) for —b<e <y 1)
0 otherwise

whereh is the smoothing width: the largér the wider the kernel, and the more
local averaging is performed.




The scheme guarantees that the order is preserved, unbiespline interpolation.

Explicit bounds
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Extension to the multidimension case

e We refer to the 1-D smooth approximation scheme astire operator.

e The rest of the algorithm consists of re-arranging the dat@a 1-D irregular
samples which can then be treated by$keL operator.

e Example: consider the “raw” data shown before, and suppguseutput (regu-
lar) grid is described by, Az, n,, Az, n,, Ay, I.e. the number of samples and
sampling interval in depth, in-line and cross-line direns, respectively.

e First step of the algorithm: apply tle/PL operator to each “vertical well” cor-
responding to a poirty;, x;;) on the surface.




Model after one step of the algorithm




Description of the second step

This step consists of looping through the discreixis, forming irregularly sam-
ples at each level, and interpolating onto the regular sasmbng the:-axis.
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Model after two steps of the algorithm




Conclusions

e A sparse, hierarchical parametrization of the velocitychhallows for a user-
defined placement of nodes.

e The algorithm exploits the hierarchical structure to perféthe smooth approxi-
mation efficiently, it also allows for user-controlled snimoess, and guarantees
that the order is preserved.

e The algorithm isreversible, in the sense that the adjoint operator of gnPL
operator and of the whole scheme exist, thus allowing itsruagradient-based
optimization context.

e |n particular, the parametrization and the algorithm hasenbsuccessfully used
for NMO-based differential semblance optimization (see tak).
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