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Motivation

• The choice of model space to describe the background velocity is essential.
In particular, the model should:

– provide an accurate representation of the real medium, while being sparse, to
avoid oversampling in areas where the velocity varies only slightly.

– accomodate for explicit bounds on the velocity (e.g. stability issues in finite
difference schemes).

– be adequate for seismic processing: in practice, the velocity should be:

∗ sampled on regular grids (e.g. finite difference schemes).

∗ twice continuously differentiable (high-frequency asymptotics assumption).
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Proposed solution

We propose a combination of:

• a parsimonious parametrization of the velocity field, by means of user-specified
nodal values.

• a computationally efficient algorithm to smoothly approximate nodal velocity
values on regular grids, for models of arbitrary dimensions.

Characteristics:

• the algorithm allows for used-defined smoothness.

• it also guarantees that bounds explicitly placed on the nodes are preserved by the
corresponding approximants.
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Model parametrization
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Partially Irregular Grids (PIGrids). The velocities are specified as:vijk ≡ v(yi, xij, zijk).
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One-dimensional smooth approximation

The building block of the algorithm consists of:

• Piecewise linear interpolation on a regular grid.

• Smoothing is accomplished via convolution with a triangular kernel of the form:

k(x) =

{

2

h

(

1 − |x|
h/2

)

for − h
2
≤ x ≤ h

2

0 otherwise
(1)

whereh is the smoothing width: the largerh, the wider the kernel, and the more
local averaging is performed.
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Explicit bounds

The scheme guarantees that the order is preserved, unlike cubic spline interpolation.
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Extension to the multidimension case

• We refer to the 1-D smooth approximation scheme as theSMPL operator.

• The rest of the algorithm consists of re-arranging the data into 1-D irregular
samples which can then be treated by theSMPL operator.

• Example: consider the “raw” data shown before, and suppose the output (regu-
lar) grid is described bynz, ∆z, nx, ∆x, ny, ∆y, i.e. the number of samples and
sampling interval in depth, in-line and cross-line directions, respectively.

• First step of the algorithm: apply theSMPL operator to each “vertical well” cor-
responding to a point(yi, xij) on the surface.
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Model after one step of the algorithm
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Description of the second step

This step consists of looping through the discretez-axis, forming irregularly sam-
ples at each level, and interpolating onto the regular samples along thex-axis.
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Model after two steps of the algorithm
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Conclusions

• A sparse, hierarchical parametrization of the velocity which allows for a user-
defined placement of nodes.

• The algorithm exploits the hierarchical structure to perform the smooth approxi-
mation efficiently, it also allows for user-controlled smoothness, and guarantees
that the order is preserved.

• The algorithm isreversible, in the sense that the adjoint operator of theSMPL

operator and of the whole scheme exist, thus allowing its usein a gradient-based
optimization context.

• In particular, the parametrization and the algorithm have been successfully used
for NMO-based differential semblance optimization (see next talk).
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