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ABSTRACT

Shot-geophone migration, commonly accomplished using wavefield depth extrapo-
lation (“survey sinking”), has a two way reverse time realization as well. The reverse
time version permits imaging of overturned reflections. Shot-geophone migration dif-
fers from other prestack migrations in the definition of the prestack image volume
which it creates. This difference is most clearly seen by identifying shot-geophone
migration as the adjoint of an appropriate forward modeling operator. The offset
vector parametrizing shot-geophone image gathers need not be horizontal, and this
fact can be used to good effect in constructing prestack images of near-vertical or
overturned structures. Unlike other prestack migrations, the image property of shot-
geophone migration characteristic of correct velocity - focussing of reflection energy
at zero offset - holds in strongly refracting media.

INTRODUCTION

The basis of migration velocity analysis is the semblance principle: prestack migrated
data volumes contain flat image gathers, i.e. are at least kinematically independent of
the bin or stacking parameter, when the velocity is correct (Kleyn, 1983; Yilmaz, 1987).
Migration velocity analysis (as opposed to standard NMO-based velocity analysis) is most
urgently needed in areas of strong lateral velocity variation, i.e. “complex” structure such
as salt flanks, chalk tectonics, and overthrust geology. However strong refraction implies
multiple raypaths connecting source and receiver locations with reflection points, and
multiple raypaths in turn imply that the semblance principle is not valid: that is, image
gathers are not in general flat, even when the migration velocity closely approximates the
true propagation velocity (Stolk and Symes, 2004).
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The failure of the semblance principle in complex structure afflicts all prestack migra-
tion techniques based on data binning, i.e. for which each data bin creates an independent
image. This category includes many variants of common shot, common offset and com-
mon scattering angle migration - see (Nolan and Symes, 1996; Nolan and Symes, 1997; Xu
et al., 2001; Prucha et al., 1999; Stolk, 2002; Stolk and Symes, 2004). However one well-
known form of prestack image formation does not migrate image bins independently: this
is Claerbout’s survey-sinking migration (Claerbout, 1985), commonly implemented using
some variety of one-way wave equation to extrapolate source and receiver depths. The
semblance principle for survey sinking migration differs from that appropriate to other
prestack migrations: rather than being flat in offset, energy is focussed at zero offset when
the velocity is kinematically correct. This paper refers to this variant of the semblance
principle as the focussing property.

Note that survey sinking migration is limited to migration velocity model - data com-
binations in which rays carrying significant energy travel essentially vertically (the “DSR
condition”, per (Stolk and De Hoop, 2001)).

Recently (Stolk and De Hoop, 2001) showed that survey sinking does not create image
artifacts, i.e. that the focussing property holds in media of essentially arbitrary com-
plexity, provided that the DSR condition is valid. Stolk and deHoop also showed that a
“Kirchhoff” or diffraction sum implementation is possible, which makes it clear that depth
extrapolation per se is not the explanation for the good semblance (focussing) property
of survey sinking migration. The basis of this ray theoretic analysis is a DSR forward
modeling operator, of which the survey-sinking migration operator is the adjoint.

Once one understands survey-sinking migration as the adjoint operator of a shot-
geophone model, it is clear that this migration is a special case of a general class of
shot-geophone migration methods, and that these can be formulated without reference to
one-way wavefield extrapolation. The purpose of this paper is to introduce this more
general family of migration operators, describe two-way reverse time methods for com-
puting them, and to establish their artifact-free nature. We give a different and somewhat
simpler argument than the one in (Stolk and De Hoop, 2001) for the absence of kinematic
artifacts under the DSR hypothesis. In contrast to (Claerbout, 1985; Stolk and De Hoop,
2001), our formulation and analysis accomodates non-horizontal offset, and we explain
the importance of this generalization for imaging near-vertical or overturned structure.
Imaging of reflectors at arbitrary angle of dip requires that the dip vector not be parallel
to the direction of offset - otherwise the focussing property is lost, for example in attempt-
ing to image a vertical reflector using only horizontal offsets in shot-geophone migration.
We illustrate this phenomenon with simple examples, and explain it via ray theory.

For the general (non-DSR) case we propose a method for imaging all dips simultane-
ously by combining two or more depth offset directions, with appropriate midpoint dip
filtering. In this case, the focussing property cannot in general be guaranteed in the simple
form for which it holds when the DSR condition is satisfied. Instead, we show that image
volume energy is localized (i) at zero offset, and (ii) possibly outside a corridor around
zero offset. We relate the width of the corridor to properties of the ray fields, which are
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necessary for a final stacked image at correct velocity to faithfully render the reflectors in
the subsurface (traveltime injectivity condition, no scattering over π).

The papers (Biondi and Shan, 2002; Biondi and Symes, 2004) introduce essentially the
same family of reverse time algorithms, along with the notion of general (non-horizontal)
subsurface offset. These papers shows that shot-geophone reverse time migration retains
the property which has led in the past to interest in reverse time migration (Whitmore,
1983; Yoon et al., 2003): it images reflectors which are invisible to depth extrapolation
migration due to overturned raypaths. The approach to imaging all dips proposed in
(Biondi and Symes, 2004) produces a single angle domain volume, rather than the three
offset domain volumes (one for each coordinate axis) proposed here. The input to the
angle domain image construction is essentially the three image volumes defined in this
paper, however, and the two approaches are very closely related. The concept of geological
dip is central to the definition of image gather developed in (Biondi and Symes, 2004).
In the present paper, we develop an alternate definition of shot-geophone image volume
whose focussing properties do not depend on a well-defined geologic dip. Since geologic dip
may be ill-defined at important locations within the sedimentary section, eg. at pinchouts
and salt truncations, we believe this alternate construction to be potentially useful.

TWO WAY SHOT-GEOPHONE MIGRATION

This section introduces shot-geophone migration as the adjoint of a shot-geophone
modeling operator, with a completely general offset vector. The paper (Stolk and De Hoop,
2001) shows how Claerbout’s survey sinking migration via DSR extrapolation arises as a
special case.

We assume that sources and receivers lie on the same depth plane, and adjust the
depth axis so that the source-receiver plane is z = 0. This restriction is can be removed
at the cost of more complicated notation (and numerics): it is not essential. Nothing
about the formulation of the migration method presented below requires that data be
given on the full surface z = 0.

While the examples to be presented later are all 2D, the construction is not: in the
following x (and other bold face letters) will denote either two- or three-dimensional
vectors. Source locations are xs, receiver locations are xr.

Single scattering

The causal acoustic Green’s function G(x, t;xs) for a point source at x = xs is the
solution of

1

v2(x)

∂2G

∂t2
(x, t;xs) −∇2

xG(x, t;xs) = δ(x − xs)δ(t) (1)

with G = 0, t < 0.

In common with all other migration methods, shot-geophone migration is based on
the Born or single scattering approximation. Denote by r(x) = δv(x)/v(x) a relative
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perturbation of the velocity field. Then linearization of the wave equation yields for the
corresponding perturbation of the Green’s function

1

v2(x)

∂2δG

∂t2
(x, t;xs) −∇2

xδG(x, t;xs) =
2r(x)

v2(x)

∂2

∂t2
G(x, t;xs) (2)

whose solution has the integral representation at the source and receiver points xr,xs

δG(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dh

∫

dτ
2r(x)

v2(x)
G(x, t − τ ;xr)G(x, τ ;xs) (3)

The singly scattered field is the time convolution of δG with a source wavelet (or
the space-time convolution with a radiation pattern operator, for more complex sources).
Since the principal concern of this paper is kinematic relationships between data and
image, we will ignore the filtering by the source signature (i.e. replace it with a delta
function). This effective replacement of the source by an impulse does not seem to in-
validate the predictions of the theory, though the matter is certainly worthy of more
study.

Thus the Born modeling operator F [v] is

F [v]r(xr, t;xs) = δG(xr, t;xs)

Prestack shot profile modeling results from replacing 2r(x)/v2(x) with R(x,xs), i.e.
permitting reflectivity to be defined differently for each shot. Examination of equation (2)
shows that each shot is then modeled independently of every other. The adjoint of the shot
profile modeling operator is shot profile migration; since Born modeling is just shot profile
modeling with R(x,xs) = 2r(x)/v2(x), Born migration is shot profile migration followed
by the adjoint of the “spray” mapping r(x) 7→ R(x,xs) = 2r(x)/v2(x), which is the
stack. The other standard prestack migrations via data binning have similar relationships
to Born migration.

Shot-geophone modeling and migration in midpoint-offset coordinates

Shot-geophone modeling results from a different generalization of reflectivity: replace
2r(x)/v2(x) by R(x,h) where h is the depth (half)offset mentioned in the introduction.
The coordinate x plays the role of midpoint.

Remark: If the velocity is constant, at least locally in a region to be imaged, it is possible
to interpret the midpoint x as an image point (Biondi and Symes, 2004). In general this
is not possible, and only the offset coordinate h has direct physical significance.

Replace the Born scattering field δG by the field u, defined by equation (3) by

u(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dh

∫

dτ R(x,h)G(x + h, t − τ ;xr)G(x − h, τ ;xs) (4)
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It is easy to see that u(xr, t;xs) is the value at y = xr of the modified shot-profile field
u(y, t;xs), which solves

1

v2(y)

∂2u

∂t2
(y, t;xs) −∇2

yu(y, t;xs) =

∫

dh R(y − h,h)
∂2

∂t2
G(y − 2h, t;xs) (5)

The shot-geophone modeling operator F̄ [v] is given by

F̄ [v]R(xr, t;xs) = u(xr, t;xs)

The field u(x, t;xs) is identical to δG(x, t;xs) when

R(x,h) =
2r(x)

v2(x)
δ(h)

i.e. when the generalized reflectivity is concentrated at offset zero. Therefore Born mod-
eling is shot-geophone modeling following the mapping

r(x) 7→ 2r(x)

v2(x)
δ(h) (6)

Born migration is then shot-geophone migration followed by the adjoint of the mapping
defined in equation (6), i.e. which is

R(x,h) 7→ 2R(x, 0)

v2(x)
(7)

i.e. shot-geophone migration followed by extraction off the zero offset section.

The shot-geophone migration operator is the adjoint of the shot-geophone modeling op-
erator. Its reverse time implementation is a minor variation on the usual implementation
of reverse time migration (the “adjoint state method”, see eg. (Tarantola, 1987; Whit-
more, 1983; Lailly, 1983; Yoon et al., 2003)). We give a derivation in Appendix A, for the
sake of completeness. The result is

F̄ ∗[v]d(x,h) = −
∫

dxs

∫ T

0

dt
∂q

∂t
(x + h, t;xs)

∂2G

∂t2
(x − h, t;xs) (8)

where the adjoint state or backpropagated field q(x, t;xs) satisfies q ≡ 0, t ≥ T and
(

1

v(x)2

∂2

∂t2
−∇2

x

)

q(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr) (9)

Remark: Note that the backpropagated field is not in general the physical scattered field,
time-reversed. It is a mathematical convenience which permits a simple computation of
the adjoint, with no immediate physical significance. Discretization of the wave equation
for the scattered field (2), eg. by finite differences, gives a linear system, written implicitly
as a recursion. The calculation specified by equations (8,9) is the continuous limit of the
transposed system, again written implicitly as a recursion.

The migration operator defined by equations (8,9) is very similar to the usual prestack
reverse time migration operator:
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1. The adjoint state field q is exactly the same as the usual adjoint state field which
appears in two-way reverse time migration, i.e. the solution of the problem (9), and
is computed independently for each shot;

2. The Green’s function G(x, t;xs) is exactly the same reference field used in shot
profile two way reverse time migration, i.e. the solution of the problem (1), and can
also be computed shot-by-shot;

3. The imaging condition (8) is exactly the same as the usual two-way reverse time
shot profile imaging condition when h = 0; the latter is the reverse time version of
Claerbout’s survey-sinking imaging condition (Claerbout, 1985).

4. Therefore the only real difference with standard two way reverse time migration
comes in the h dependence in (8), which implies a loop over h. Note that this
does not require the solution of any new PDEs: it simply inserts a new loop in the
computation of the adjoint image (migration output), over h. Thus the image can
still be accumulated in a loop over shots of independent, shot-by-shot computations,
exactly as is done in standard reverse time migration. The additional computational
burden of the h loop depends on the sampling and range of h, and on the propor-
tion of the maximum possibly image volume computed. This proportion may be
small: velocity analysis typically requires only a small fraction of the possible image
gathers. We will return to this issue briefly in the discussion section.

Shot-geophone modeling and migration in source-receiver coordinates

It turns out to be convenient to introduce a more symmetrical representation of shot-
geophone modeling, which we dub the source-receiver representation.

Define coordinates ys = x−h, yr = x+h; these will turn out to be coordinates along
rays from source and receiver respectively. Define the source-receiver reflectivity R̄ by

R̄(ys,yr) = R

(

ys + yr

2
,
yr − ys

2

)

, i.e. R̄(x − h,x + h) = R(x,h)

Then change integration variables in equation (4)

F̄ [v]R̄(xr, t;xs) =
1

2

∂2

∂t2

∫

dys

∫

dyr

∫

dτ R̄(ys,yr)G(yr, t − τ ;xr)G(ys, τ ;xs) (10)

It follows that
F [v]R(xr, t;xs) = F̄ [v]R̄(xr, t;xs) = u(xr, t;xs)

where u solves both

1

v2(x)

∂2u

∂t2
(x, t;xs) −∇2

xu(x, t;xs) =

∫

dys R̄(ys,x)
∂2

∂t2
G(ys, t;xs) (11)

and
1

v2(x)

∂2u

∂t2
(xr, t;x) −∇2

xu(xr, t;x) =

∫

dyr R̄(x,yr)
∂2

∂t2
G(yr, t;xr) (12)
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The source-receiver representation of shot-geophone migration is

F̄ [v]∗d(ys,yr) =

∫

dxs

∫

dtq(yr, t;xs)
∂2

∂t2
G(ys, t;xs) (13)

in which q is the backpropagated field described in the last subsection (solution of equation
(9)). Note that the imaging condition (13) collapses to the usual imaging condition when
ys and yr concide with an image point (zero offset).

Remark: The source-receiver representation is important for the kinematic analysis to
follow. However the midpoint-offset representation is more convenient for computation.

Kirchhoff representation of shot-geophone migration

An integral or “Kirchhoff” representation of the shot-geophone migration operator
is also possible. We mention this here to emphasize that the computational representa-
tion of the shot-geophone migrated field is not the determinant of its favorable kinematic
properties: two way reverse time, Kirchhoff, and depth extrapolation computations will
yield equivalent migrations, within the domain of validity of each. The Kirchhoff repre-
sentation described here is in principle kinematically equivalent to two-way reverse time
computation, as described in the previous subsection. Depth extrapolation computations
have a more restricted domain of validity.

Application of standard high frequency asymptotics and stationary phase arguments
to the integral representation of the shot-geophone field (3) gives

F [v]R(xr, t;xs) =
∂2

∂t2

∑

i,j

∫ ∫

dx dh A(i,j)(x,h,xs,xr) δ(t − T (i,j)(x,h,xs,xr))R(x,h)

(14)
in which T (i,j)(x,h,xs,xr) is the sum of the ith branch of the (one-way) traveltime from
the source point xs to the source-ray scattering point x − h, and the jth branch of the
traveltime from the receiver-ray scattering point x + h to the receiver point xr, and
A(i,j)(...) is an amplitude involving spreading factors, velocity, etc. (Stolk and Symes,
2004). The Kirchhoff shot-geophone migration formula is then

F ∗[v]d(x,h) '
∫ ∫

dxsdxr

∑

i,j

A(i,j)(x,h,xs,xr)
∂2d

∂t2
(xs,xr, T

(i,j)(x,h,xs,xr)) (15)

These formulas were derived in a different way in (Stolk and De Hoop, 2001) for the
special case h3 = 0, i.e. horizontal depth-offset, and used to analyze the kinematics of
shot-geophone migration, to which we now turn.

KINEMATICS OF SHOT-GEOPHONE MIGRATION

An event in the data is characterized by its (3D) moveout: locally, by a moveout
equation t = T (xs,xr), and infinitesimally by the source and receiver slownesses

ps = ∇xs
T, pr = ∇xr

T
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Significant energy with this moveout implies that locally near (xs,xr, t) the data contains
a plane wave component with wavenumber (ωps, ωpr, ω). These coordinates (position,
wavenumber) give the phase space representation of the event.

Note that for incomplete coverage, eg. marine streamer geometry, an event in the
data will not determine its (3D) moveout uniquely. For example, in (idealized) marine
streamer geometry, with the streamers oriented along the x axis, the y component of pr

is not determined by the data. In the discussion to follow, ps and pr are assumed to be
compatible with a data event.

Likewise, a reflector (in the source-receiver representation) at (ys,yr) with wavenum-
ber (ks,kr) is characterized in (image volume) phase space by these coordinates.

The kinematical description of shot-geophone migration relates the phase space coor-
dinates of events and reflectors. An event with phase space representation

(xs,xr, tsr, ωps, ωpr, ω)

is the result of a reflector with (double reflector) phase space representation (ys,yr,ks,kr)
exactly when

• there is a ray (Xs,Ps) leaving the source point Xs(0) = xs at time t = 0 with ray
parameter Ps(0) = ps, and arriving at Xs(ts) = ys at t = ts with ray parameter
Ps(ts) = −ks/ω;

• there is a ray (Xr,Pr) leaving Xr(ts) = yr at t = ts with ray parameter Pr(ts) =
kr/ω and arriving at the receiver point Xr(tsr) = xs at time t = tsr = ts + tr with
ray parameter Pr(tsr) = pr.

Figure 1 illustrates this kinematic relation. Appendix B provides a derivation.

Note that since Ps,Pr are ray slowness vectors, there is necessarily a length relation
between ks,kr: namely,

1

v(ys)
= ‖Ps(ts)‖ =

‖ks‖
|ω|

1

v(yr)
= ‖Pr(tr)‖ =

‖kr‖
|ω|

whence
‖kr‖
‖ks‖

=
v(ys)

v(yr)
(16)

The kinematics of shot-geophone migration are somewhat strange, so it is reassuring
to see that for physical reflectors (i.e. R̄(ys,yr) = r(x)δ(h)) the relation just explained
becomes the familiar one of reflection from a reflecting element according to Snell’s law.
A quick calculation shows that such a physical R̄ has a significant local plane wave com-
ponent near (ys,yr) with wavenumber (ks,kr) only if ys = yr = x and r has a significant
local plane wave component near x with wavenumber kx = ks + kr. From equation (16),
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ks and kr have the same length, therefore their sum kx is also their bisector, which es-
tablishes Snell’s law. Thus a single (physical) reflector at x with wavenumber ξ gives rise
to a reflected event at frequency ω exactly when the rays (Xs,Ps) and (Xr,Pr) meet at
x at time ts, and the reflector dip kx = ω(Pr(ts)−Ps(ts)), which is the usual kinematics
of single scattering. See Figure 2.

It is now possible to answer the question: in the shot-geophone model, to what extent
does a data event determine the corresponding reflector? The rules derived above show
that the reflection point (ys,yr) must lie on the Cartesian product of two rays, (Xs,Ps)
and (Xr,Pr), consistent with the event, and the total time is also determined. If the
coverage is complete, so that the event uniquely determines the source and receiver rays,
then the source-receiver representation of the source-receiver reflector must lie along this
uniquely determined ray pair. This fact contrasts dramatically with the imaging am-
biguities demonstrated in (Nolan and Symes, 1996; Nolan and Symes, 1997; Xu et al.,
2001; Prucha et al., 1999; Stolk, 2002; Stolk and Symes, 2004) for all forms of prestack
depth migration based on data binning. Even when coverage is complete, in these other
forms of prestack migration strong refraction leads to multiple ray pairs connecting data
events and reflectors, whence ambiguous imaging of a single event in more than one loca-
tion within the prestack image volume.

Nonetheless reflector location is still not uniquely determined by shot-geophone mi-
gration as defined above, for two reasons:

• Only the total traveltime is specified by the event! Thus if ys = Xs(ts),yr = Xr(ts)
are related as described above to the event determining the ray pair, so is y′

s =
Xs(t

′

s),y
′

r = Xr(t
′

s) with ts + tr = t′s + t′r = tsr. See Figure 1.

• Incomplete coverage may prevent the event from determining its 3D moveout, as
mentioned above, and therefore a family of ray pairs, rather than a unique ray pair,
corresponds to the event.

KINEMATICS WITH RESTRICTED OFFSETS

One way to view the remaining imaging ambiguity in shot-geophone migration as
defined so far is to recognize that the image point coordinates (ys,yr) (or (x,h)) are
six-dimensional (in 3D), whereas the data depends on only five coordinates (xr, t,xs) (at
most). Formally, restricting one of the coordinates of the image point to be zero would
at least make the variable counts equal, so that unambiguous imaging would at least
be conceivable. Since physical reflectivities are concentrated at zero (vector) offset, it is
natural to restrict one of the offset coordinates to be zero.

Imaging conditions with restricted offsets

In 3D, there are three possibilities, in which R(x,h) takes one of the three forms

Rx(x, hy, hz)δ(hx), Ry(x, hx, hz)δ(hy), Rz(x, hx, hy)δ(hz)

9
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leading to three restricted modeling operators:

F̄x[v]Rx(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dhy

∫

dhz

∫

dτ

Rx(x, hy, hz)G(x + (0, hy, hz), t − τ ;xr)G(x − (0, hy, hz), τ ;xs) (17)

F̄y[v]Ry(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dhx

∫

dhz

∫

dτ

Rx(x, hx, hz)G(x + (hx, 0, hz), t − τ ;xr)G(x − (hx, 0, hz), τ ;xs) (18)

F̄z[v]Rz(xr, t;xs) =
∂2

∂t2

∫

dx

∫

dhx

∫

dhy

∫

dτ

Rx(x, hx, hy)G(x + (hx, hy, 0), t− τ ;xr)G(x − (hx, hy, 0), τ ;xs) (19)

The kinematics of these restricted operators follows directly from that of the unrestricted
operator, developed in the preceding section.

Denote ys = (xs, ys, zs),ks = (ks,x, ks,y, ks,z) etc. For restricted x offset,

R̄(ys,yr) = R̄x

(

xs + xr

2
, ys, yr, zs, zr

)

δ(xs − xr)

Fourier transformation shows that R̄ has a significant plane wave component with wavenum-
ber (ks,kr) precisely when R̄x has a significant plane wave component with wavenum-
ber (ks,x + kr,x, ks,y, kx,z, kr,y, kr,z). Thus a ray pair (Xs,Ps), (Xr,Pr) compatible with
a data event with phase space coordinates (xr,xs, tsr, ωps, ωpr, ω) images at a point
(x, ys, yr, zs, zr, kx, ks,y, ks,z, kr,y, kr,z) provided that for 0 ≤ ts ≤ tsr, Xs,x(ts) = Xr,x(ts) =
x, Xs,y(ts) = ys, Xr,z(ts) = zs, Xr,y(ts) = yr, Xr,z(ts) = zr, Pr,x(ts) − Ps,x(ts) = ks/ω,
Ps,y(ts) = ks,y/ω, etc.

Similarly, for restricted y offset,

R̄(ys,yr) = R̄y

(

xs, xr,
ys + yr

2
, zs, zr

)

δ(ys − yr)

and the imaging conditions are Xs,y(ts) = Xr,y(ts) = y, Pr,y(ts) − Ps,y(ts) = ks/ω,
Xs,x(ts) = xs, Ps,x(ts) = ks,x/ω, etc. at image phase space point

(xs, xr, y, zs, zr, ks,x, kr,x, ky, ks,z, kr,z).

For restricted z offset,

R̄(ys,yr) = R̄z

(

xs, xr, ys, yr,
zs + zr

2

)

δ(zs − zr)

and the imaging conditions are Xs,z(ts) = Xr,z(ts) = z, Pr,z(ts) − Ps,z(ts) = kz/ω,
Xs,x(ts) = xs, Ps,x(ts) = ks,x/ω, etc. at image phase space point

(xs, xr, ys, yr, z, ks,x, kr,x, ks,y, kr,y, kz).
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Horizontal offset and the DSR condition

As explained in (Stolk and De Hoop, 2001), Claerbout’s survey sinking migration is
kinematically equivalent to shot-geophone migration as defined here, under two assump-
tions:

• offsets are restricted to horizontal (hz = 0);

• rays (either source or receiver) carrying significant energy do not turn, i.e. Ps,z >
0, Pr,z < 0 throughout the propagation.

We call the second condition the “Double Square Root”, or “DSR”, condition, for
reasons explained in (Stolk and De Hoop, 2001). This reference also offers a proof of the

Claim: Under these restrictions, the imaging operator F̄z can image a ray pair at precisely
one location in image volume phase space. When the velocity is correct, the image energy
is therefore concentrated at zero offset.

The demonstration presented in (Stolk and De Hoop, 2001) uses oscillatory integral
representations of the operator F̄z and its adjoint. However, the conclusion also follows
directly from the kinematic analysis above and the DSR condition.

Indeed, note that the DSR condition implies that depth is increasing along the source
ray, and decreasing along the receiver ray - otherwise put, depth is increasing along
both rays, if you traverse the receiver ray backwards. Therefore depth can be used to
parametrize the rays. With depth as the parameter, time is increasing from zero along
the source ray, and decreasing from tsr along the receiver ray (traversed backwards). Thus
the two times can be equal (to ts) at exactly one point.

Since the scattering time ts is uniquely determined, so are all the other phase space
coordinates of the rays. If the ray pair is the incident-reflected ray pair of a reflector,
then the reflector must be the only point at which the rays cross, since there is only one
time ts at which Xs,z(ts) = Xr,z(ts). See Figure 3. Therefore in the infinite frequency
limit the energy of this incident-reflected ray pair is imaged at zero offset, consistent with
Claerbout’s imaging condition.

If furthermore coverage is complete, whence the data event uniquely determines the
rays, then it follows that a data event is imaged at precisely one location, namely the
reflector which caused it, and in particular focusses at zero offset. This is the result
established in (Stolk and De Hoop, 2001), for which we have now given a different (and
more elementary) proof.

Remark: Note that the DSR assumption precludes the imaging or near- or post-vertical
reflectors, since in general for such reflectors it will not be possible to satisfy the imaging
conditions without either incident or reflected ray turning horizontal at some point.

Figure 4 illustrates the focussing property and suggests its possible utility for velocity
analysis. The data used to generate these migrated image gathers is 2D finite difference
synthetic Born data, with a constant background velocity and 2D random reflectivity
r. One hundred source positions spaced every 10 m on the surface. The receiver array
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is fixed, occupying the same positions as the source. The resulting 10000 traces were
migrated, i.e. the adjoint of F̄z applied, using the method described above (based on
equation (8)) with backpropagation carried out via a compatible finite difference method
and the crosscorrelation by the trapezoidal rule on the finite difference grid. The figure
shows horizontal offset CIGs for the correct velocity, i.e. that used to generate the data,
on the left, 10% high velocity in the center, and 10% low velocity on the right. The CIG
is well-focussed at the correct velocity; energy spreads to non-zero offsets with deviation
from correct velocity.

A second 2D synthetic example emphasizes the dramatic contrast, revealed by the
Stolk-deHoop theorem, between the behaviour of shot-geophone migration and other
forms of prestack migration. This example is used in (Stolk, 2002; Stolk and Symes, 2004)
to show that common offset and Kirchhoff common scattering angle migration generally
produce strong kinematic artifacts in strongly refracting velocity models. The velocity
model consists of a slow Gaussian lens embedded in a constant background. As shown
in Figure 5, this model is strongly refracting - it produces triplications in rayfields shot
from surface points - while still obeying the DSR condition, for the offsets used in the
example. Below the lens, at a depth of 2 km, we placed a flat reflector. We synthesized
data using a (4, 10, 20, 40) zero phase bandpass filter as (isotropic) source wavelet and a
finite difference scheme with adequate sampling. A typical shot gather (Figure 6) shows
the compex pattern of reflections from the flat reflector propagated through the lens.

We migrated this data using a depth-extrapolation scheme ((Prucha et al., 1999) and
references cited there). Figure 11 shows the image (left), a horizontal offset CIG (center),
and an angle domain CIG (right, see discussion below). The central panel clearly shows
the absence of any violation of the focussing property: all energy is concentrated at zero
offset.

Contrast this behaviour with that of Kirchhoff common offset and common scattering
angle migration, Figures 7, 8 reproduced from (Stolk and Symes, 2004). For these prestack
migration methods, defined by surface binning of the data, image gathers should be flat
when correct migration velocity is used (as opposed to focussed at zero offset, as for shot-
geophone migration). Instead, numerous highly energetic non-flat events contaminate
the gathers. Missing rays are not the cause: all arrivals are used in these computations,
with correct phase shifts and amplitudes in the imaging formulae. In fact, these events
are kinematic in nature: that is, they cannot be removed by more sophisticated signal
processing, but are intrinsic to the ray geometry of these migration methods. See (Stolk
and Symes, 2004) for a detailed explanation.

Remark: Note that Kirchhoff common scattering angle migration, as used to produce the
gather displayed in Figure 8, is fundamentally different from the angle domain migrations
described in (Prucha et al., 1999; Rickett and Sava, 2002; Sava and Fomel, 2003). The
former uses an implicit surface-oriented phase space binning of the data, whereas the
latter amounts to a Radon transform of the shot-geophone migration output in depth and
offset (or is closely related to this transform). The focussing property of shot-geophone
migration, just illustrated, implies that angle domain migration also produces artifact-free
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image gathers, at least when the DSR condition holds. The right-hand panel in Figure 11
presents an angle domain image gather following the prescription of (Prucha et al., 1999),
which illustrates this contention.

Combining horizontal and vertical offsets: the Traveltime Injectivity Condi-

tion

The DSR assumption will not hold, or permit adequate imaging, in complex lithologic
environments with substantial lateral and vertical velocity variation, vertical or overhang-
ing reflectors, etc. However, two other conditions, both necessary in general for imaging
given correct velocity, are also sufficient to ensure that the energy in a properly filtered
source-receiver restricted offset image volumes is concentrated (i) at zero offset, and pos-
sibly (ii) at offsets greater than a minimum which depends on various characteristics of
the velocity through its ray geometry. That is, in absence of the DSR restriction, energy
may appear at nonzero offsets, even with correct velocity, but not within a corridor about
zero offset, except at zero offset.

This section explains the physical and geometric significance of these conditions, and
the necessity of filtering. Mathematical details appear in Appendix C.

The first of these two conditions is the “no scattering over π” condition identified al-
ready in (Rakesh, 1988) as essential to accurate migration. That is, no energy along direct
rays connecting source to receiver can appear in the data submitted to migration. We
quantify this condition by demanding that the scattering angle for all ray pairs involved
in image construction be less than a maximum angle, which is less than π. This “maxi-
mum scattering angle” or MSA condition can in principle be enforced by ray-tracing and
selective muting and Radon filtering.

The second condition is the Traveltime Injectivity Condition or TIC (Ten Kroode
et al., 1998; Nolan and Symes, 1997). This condition is in general necessary for artifact-
free postmigration stacks - i.e. absence of mispositioned reflectors, not in the prestack
image volume but in the final stacked image. TIC mandates that along any pair of rays,
at most one point of intersection exists with a given (total) traveltime. Clearly TIC is also
implied by the DSR condition, so TIC generalizes DSR. It is also clear that TIC can be
violated - see the cited references for examples.

Under some circumstances standard migration operators (i.e. adjoints of linearized
modeling operators) may produce artifact-free images even when TIC is violated - see
(Stolk, 2000) for a discussion of this point. However in general TIC is necessary for
artifact-free imaging. A quantitative form of TIC, with a specific estimate of distance vs.
time along imaging ray pairs, is explained in Appendix C.

It is less clear how TIC may be enforced for the data submitted to migration. The
present results, like those of (Ten Kroode et al., 1998), simply presume that (the quanti-
tative form of) TIC holds.

As explained earlier, a simple variable count suggests that unambiguous images can
only be accomplished by restricting the offset to planes (or lines, for 2D shot-geophone
migration). However, without the DSR hypothesis, it is easy to see that the horizontal
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offset imaging operator, F̄z, cannot have the focussing property, i.e. focus energy at zero
offset for correct velocity.

Figures 9 and 10 show why this is so. Both figures are meant to cartoon imaging at
correct velocity, which for convenience is assumed constant near the image point (hence
the locally straight rays). In Figure 9, two rays image an event at their intersection on a
reflector with nonzero z component of dip. Note that as one moves away from the image
point, keeping the total time along the two rays the same, the difference in z components
of the ray locations unavoidably grows, so that these (unrestricted) source-receiver image
points do not appear in the horizontal offset operator output. That is, only the zero
offset image survives restriction to horizontal offset. On the other hand, Figure 10 shows
an image point on a vertical reflector; clearly one can move away from the image point,
maintaining the same total time, in such a way that these other unrestricted image points
have the same z components hence survive the restriction to horizontal offset. Obviously
in this case the output of F̄z will have energy at all offsets sufficiently close to zero, and
the focussing property is lost.

Examples presented in (Biondi and Shan, 2002) demonstrate this “smearing” of image
gathers in horizontal offset shot-geophone migration (F̄ ∗

z ) as reflector dip approaches
horizontal. Here we give a simpler example which exactly corresponds to the cartoon
10. The velocity depicted in Figure 12 increases (linearly) with depth to the right of the
vertical reflector, so generates reflections along ray pairs, one of which has turned. Sources
and receivers to the right of the reflector record data, of which a typical shot gather is
depicted in 13. We have used a slight modification of the frequency-domain two-way
migration algorithm proposed by (Pratt et al., 1998). The horizontal offset image gather
(Figure 14) at the location of the reflector shows some energy focussed at zero offset but
also a great deal of low-frequency energy is spread over the entire offset range - note that
according to the color scale, only small positive values but large negative values occur,
indicating the presence of large near-DC components. This low-frequency smear is the
residue of destructive interference of passband energy imaged and many contiguous image
points, as predicted by the argument illustrated in Figure 10.

Figure 9 on the other hand suggests that this reflector should be well-imaged by a
vertical offset image gather, and this is indeed the case. Figure 15 shows vertical offset
image gathers at two depths: the energy is well-focussed at zero (vertical) offset and
localized on the reflector.

Note that the absence of nonzero offset image energy suggested by Figure 9 is a local
phenomenon. That is, the rays may curve in such a way that points may appear with the
same total travel time and z coordinates, sufficiently far away from the physical scattering
point - Figure 17 cartoons this situation. The time difference cannot be close to zero,
however. As shown in Appendix C, together with TIC and MSA this minimum time
difference implies that the offset of any image energy at nonzero offset also exceeds a
minimum.

The inescapable conclusion is that horizontal offset shot-geophone migration cannot
image (near) vertical reflectors without degrading the focussing property characteristic
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of correct velocity. Precisely analogous reasoning shows that x- and y-axis vertical offset
shot-geophone migration (F̄ ∗

x , F̄ ∗

y ) cannot image dips perpindicular to the x-axis and y-axis
respectively without smearing in the restricted offset.

On the other hand, any particular dip is well-imaged by at least one of these operators,
with focussing at zero offset at least locally, as argued above in the horizontal offset case.
The paper (Biondi and Symes, 2004) presents one method to take advantage of this fact
to image all dips, using transformation to the angle domain. An alternative method works
through image filtering, as follows.

Define a filter Ψ̄z which annihilates the plane wave components of horizontal offset
reflectivities R̄z with small kz (relative to the other plane wave components). A precise
definition of such a filter is givien in Appendix D. Then for any horizontal offset reflectivity
R̄z, the filtered reflectivity Ψ̄zR̄z does not contain vertically oriented reflectors, so that the
relationship depicted in Figure 10 does not occur, and events in F̄ [v]zΨ̄zR̄z are imaged
only at zero offset.

Since the relation between event and reflector image location is the same with modeling
and migration, this reasoning indicates that:

The quantitative versions of TIC and MSA, which are necessary for reliable imaging, imply
that the filtered horizontal offset migration Rz = Ψ̄zF̄z[v]∗d has (for correct migration
velocity v) (i) energy at zero offset, and (ii) all other image energy confined to offsets at
least hmin.

Note the contrast of this statement with the result obtained under the more restrictive
DSR assumption: it is possible for the filtered migrated image volume to have energy at
nonzero offset, even when the velocity is correct - this was impossible under DSR - but
not inside the corridor h < hmin.

Rz, computed as specified above, images reflectors with nonhorizontal dips. To fill out
the dip range, one can adjoin the similarly computed vertical offset images

Rx = Ψ̄xF̄x[v]∗d, Ry = Ψ̄yF̄y[v]∗d

The three volumes Rz , Ry, Rz together image all dips, and each has the local focussing
property analogous to that already described for R̄z.

As discussed in the section below on implementation, the cost of computing image
gathers at sufficiently dense midpoints to support midpoint dip filtering may be pro-
hibitive. Dense midpoint sampling of image gathers is surely unnecessary for velocity
analysis in any case. Instead of midpoint dip filtering, simple low-cut filtering of R̄j in j,
j = x, y, z, is sufficient to remove the low-frequency smear over offset and restore focussing
at zero offset.

In the context of the model of Figure 12, filtering in z should simply remove all energy
in the horizontal offset image gather (R̄z) at the vertical reflector. Figure 16 shows that
this is indeed the case. The filtered versions of the vertical offset image gathers in Figure
15 on the other hand are barely changed at all. Thus the filtered vertical and horizontal
offset image gathers together capture all of the energy in the data and focus it at zero
offset, given the correct velocity model, as predicted by the theory.
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As noted in (Biondi and Symes, 2004), it is not possible to simply average the three
volumes R̄z, R̄y, R̄z to form a single image volume, when the velocity is not correct, due
to a variation on the familiar phenomenon of image point dispersal. Of course when
the velocity is correct, the versions of reflectors contained in the image volumes overlap,
and can be added together to form a final image volume. [The filter definition explained
in Appendix A is formulated to guarantee that this is possible, with no gaps and no
artificially enhanced amplitudes.] However for velocity analysis (i.e. before a correct
velocity has been achieved) these three volumes must be maintained as separate. See
(Biondi and Symes, 2004) for a proposal to produce a single angle domain image volume
which at least in some cases permits averaging the various image volumes (after Radon
transform) even with incorrect velocity.

IMPLEMENTATION

The computation of S-G image gathers adds a premium to the computational cost
of two way reverse time migration, which is itself costly compared to other migration
methods (Yoon et al., 2003). Even a cursory examination of the S-G imaging equation (8)
suggests that the additional cost could be considerable, and that the number of midpoints
at which image gathers are computed will have to be limited somehow. Since the number
of midpoints is related to velocity complexity, and velocity analysis typically uses only a
subset of all theoretically possible midpoints, this limitation is not necessarily in itself an
impediment. However the midpoint dip filtering operator, on which the theory depended
to avoid imaging failure, is no longer available when midpoints are decimated.

This section presents a preliminary assessment of the cost of two-way S-G CIG for-
mation, and suggests a functional alternative to midpoint dip filtering which does not
require dense midpoint sampling. We discuss in detail the cost of 2D S-G migration to
produce horizontal offset CIG; vertical offset CIGs have a similar cost profile, as do the
corresponding 3D computations.

We assume a typical finite-difference simulation approach, with the additional feature
that the domain of each simulation is limited by the distance which waves actually travel
during the scattering process. Thus the number of points in the x direction which actually
figure in an particular shot simulation, say Nx, is proportional to Nt, the number of time
steps required, and decoupled from Ns, the number of shots (and from the total length of
the survey line). Similar considerations apply to Nz.

The cost of a single shot gather simulation is S0NxNzNt ' S0CxCzN
3
t , where S0

is the number of floating point operations per stencil, and Cx, Cz reflects the propor-
tionality between Nx, Nz and Nt. The cost of backpropagating the data is similarly
S1NxNzNt ' S1CxCzN

3
t , in which the stencil count for the adjoint state equation, used in

backpropagation, is larger than than for the simulation itself - typically S1 ' 2S0. Com-
putation of the migrated image (at offset zero) costs one additional flop per spacetime
gridpoint, and we amalgamate this cost with that of the backpropagation.

The cost of the cross-correlation (equation (8)) to produce an HOCIG at a single
midpoint, per shot, is is NhNzNt. The range of offsets required in the CIG is a consequence
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of its purpose, namely velocity analysis, and is a function of the kinematic correctness
of the migration velocity model. For a kinematically correct model, the CIGs are as
concentrated as possible at zero offset, and the range of offset in the CIG need be only
a Fresnel zone or so. For incorrect models, the CIG must extend in offset far enough
that no significant amount of image energy lies outside the CIG. The relation between
”goodness” of velocity model and range of offset required to assure a constructive velocity
update is not well understood at present. We will capture this (unknown) quantity in a
proportionality constant E: Nh = ENx = ECxNt. Thus the cost per midpoint per shot
of CIG computation is ECxCzN

3
t .

The number of midpoints computed per shot is proportional to the x − extent of the
computational domain Nx∆x, as the wavefields in equation (8) vanish outside the range
of x occuring in the shot gather computation. The ratio, M , is the computed midpoint
density per unit length: Nm = MNx∆x = MNxv̄∆t, v̄ being a typical velocity. Note
that we do not presume that Nm scales with Nt, or inversely with 1/∆t, as do the other
quantities in this computation: the density of CIGs is related to the required resolution
of the velocity model, which should in principle be independent of the frequency content
of the data, insofar as the Born approximation is appropriate (i.e. insofar as migration
makes sense).

Thus the cost per shot of CIG formation is NmNhNzNt = EMCxCz v̄∆tN4
t

= EMv̄TCxCzN
3
t , with T = Nt∆t being the simulation time.

The premium required to produce the CIGs, as opposed to the migrated image, is
accordingly

(S0 + S1 + EMv̄T )CxCzN
3
t

(S0 + S1)CxCzN3
t

= 1 +
EMv̄T

S0 + S1

We can see from this simple calculation that the expense of CIG creation will rise with
kinematic error in velocity, with lateral complexity of the velocity model required to
reduce this kinematic error, and with the maximum depth probed.

Arguably, the product EM may be roughly constant, within an effective velocity
analysis process: denser sampling of the velocity model, control of which requires denser
sampling of CIGs in midpoint (larger M), should lead to enhanced accuracy of the velocity
model (smaller E). The dependence of this “constant” EM on velocity complexity is a
natural topic for further research.

Given the necessity to decimate midpoint sampling in creating CIGs, the technique
analyzed in the preceding section and Appendix C, midpoint dip filtering, is not available
in practice. Some other method is required to insure that energy focusses at zero offset
for correct velocity, at least within a corridor of nonzero width.

Our suggested alternative is based on the observation that the bandlimited nature of
seismic data implies that high-pass filtering in z (for horizontal offset CIGs) has the effect
of placing a lower bound on kz/km, where km is the midpoint wavenumber

km =
√

(ks,x + kr,x)2 + (ks,y + kr,y)2.
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In fact, if k denotes the maximum midpoint/depth wavenumber in the image, then

|kz|
km

≥ |kz|
k

The (local) spatial bandlimit k is related to the temporal bandwidth ωmax, of course,
hence varies with the background velocity v. Conceivably one could employ a space-
varying high-pass filter to keep the low-cut in kz a (more or less) constant fraction of the
total image bandwidth. We have elect to simply choose a constant low cut.

Low-cut filtering to remove image artifacts has already been illustrated in the example
of Figure 16, discussed in the last section.

CONCLUSION

This paper has provided a novel description of shot-geophone migration, as the adjoint
of a shot-geophone modeling operator which extends ordinary Born modeling. From this
point of view, the method of computation used to generate the necessary fields - two
way reverse time, two way frequency domain, or depth extrapolation - is a secondary
detail, and indeed this paper exhibits examples of all three methods. A Kirchhoff-like
formulation even exists, though its utility as a computational method may not be great.

Using our characterization of shot-geophone migration and the ray-theoretic analysis
of imaging pioneered in (Rakesh, 1988), we have given a simple argument for the very
important result of (Stolk and De Hoop, 2001): under the DSR assumption, shot-geophone
migration produces a prestack horizontal offset image volume free of kinematic artifacts.
That is, assuming DSR and correct velocity, all image energy focusses at zero offset (or, in
the angle domain, at zero slope - see (Sava et al., 2001)). This property stands in dramatic
contrast to the ubiquitous presence of such artifacts in standard prestack imaging (Stolk
and Symes, 2004).

We have also shown how to use non-horizontal offsets to produce multiple image
volumes in which the focussing-at-zero-offset property is preserved, even in the presence of
turning ray energy, through judicious filtering. Our analysis of this construction suggests
that the focussing property may be local when the DSR property is violated: that is,
image artifacts may exist at sufficiently large offsets. The extent to which such artifacts
may occur, and the implications of their existence for velocity analysis, remain to be
investigated.

Some of the early literature on shot-geophone migration suggested its possible use in
velocity analysis - see for example (Schultz and Sherwood, 1982). This possibility seems
to have been little explored in the interim (a partial exception being focussing analysis
as introduced in (Faye and Jeannot, 1986)). The properties of shot-geophone migration
explained in this paper suggest that this approach to imaging may be a particularly
appropriate tool for velocity analysis in complex structure.
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APPENDIX A

This appendix gives a quick derivation of equation (8). For several examples of this
type of computation, see (Tarantola, 1987)

The claim is that

F [v]∗d(x,h) =

∫

dxs

∫ T

0

dt q(x + h, t;xs)
∂2G

∂t2
(x − h, t;xs)
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where adjoint field q satisfies q ≡ 0, t ≥ T and

(

1

v2

∂2

∂t2
−∇2

)

q(x, t;xs) =

∫

dxr d(xr, t;xs)δ(x − xr)

and G is the reference Green’s function.

To see this, form the standard inner products in the appropriate spaces (image on the
left, data on the right), and recall that F̄ [v]R(xr, t;xs) = u(xr, t;xs), where u(x, t;xs)
satisfies

(

1

v2(x)

∂2

∂t2
−∇2

)

u(x, t;xs) =

∫

dh R(x − h,h)
∂2G

∂t2
(x − 2h, t;xs)

So
< F̄ [v]∗d, R >=< d, F̄ [v]R >

=

∫ ∫

dxs dxr

∫ T

0

dt d(xr, t;xs)u(xr, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

{
∫

dxr d(xr, t;xs)δ(x − xr)

}

u(x, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

q

]

u(x, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

[(

1

v2

∂2

∂t2
−∇2

)

u

]

q(x, t;xs)

(boundary terms in integration by parts vanish because (i) u ≡ 0, t << 0; (ii) q ≡
0, t >> 0; (iii) both vanish for large x, at each t)

=

∫

dxs

∫

dx

∫ T

0

dt

∫

dh R(x − h,h)
∂2G

∂t2
(x − 2h, t;xs)q(x, t;xs)

=

∫

dxs

∫

dx

∫ T

0

dt

∫

dh R(x,h)
∂2G

∂t2
(x − h, t;xs)q(x + h, t;xs)

=< R, F̄ [v]∗d >

from which you can immediately read off F̄ [v]∗, which has the form claimed. q.e.d.

APPENDIX B

In this appendix we establish the relation between the appearance of events in the
data and the presence of reflectors in the migrated image. This relation is the same for
the forward modeling operator and for its adjoint, the migration operator.

The reasoning presented here shares with (Stolk and De Hoop, 2001) the identification
of events, respectively reflectors, by high frequency asymptotics in phase space, but differs
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in that it does not explicitly use the oscillatory integral representation of F [v] derived in
the last section. Instead, this argument follows the pattern of Rakesh’s analysis of shot
profile migration kinematics (Rakesh, 1988). It can be made mathematically rigorous,
by means of the so-called Gabor calculus in the harmonic analysis of singularities (see
(Duistermaat, 1973) Ch. 1).

The appearance of an event at a point (xs,xr, tsr) in the data volume is equivalent to
the presence of a sizeable Fourier coefficient for a plane wave component

eiω(t−ps ·ys−pr ·yr)

in the acoustic field for frequencies ω within the bandwidth of the data, even after muting
out all events at a small distance from (xs,xr, tsr).

Note that the data does not necessarily fully determine this plane wave component, i.e.
the full 3D event slownesses ps,pr. In this appendix, ps,pr are assumed to be compatible
with the data, in the sense just explained.

Assume that these frequencies are high enough relative to the length scales in the ve-
locity that such local plane wave components propagate according to geometric acoustics.
This assumption tacitly underlies much of reflection processing, and in particular is vital
to the success of migration.

That is, solutions of wave equations such as (11) carry energy in local plane wave com-
ponents along rays. Let (Xr(t),Pr(t)) denote such a ray, so that Xr(tsr) = xr,Pr(tsr) =
pr. Then at some point the ray must pass through a point in phase space at which the
source term (right hand side) of equation (11) has significant energy - otherwise the ray
would never pick up any energy at all, and there would be no event at time tsr, receiver
position xr, and receiver slowness pr. [Supplemented with proper mathematical boiler-
plate, this statement is the celebrated Propagation of Singularities theorem of Hörmander,
(Hormander, 1983; Taylor, 1981).]

The source term involves (i) a product, and (ii) an integral in some of the variables.
The Green’s function G(ys, t,xs) has high frequency components along rays from the
source, i.e. at points of the form (Xs(ts),Ps(ts)) where Xs(0) = xs and ts ≥ 0. [Of course
this is just another instance of Propagation of Singularities, as the source term in the
wave equation for G(ys, ts,xs) is singular only at (xs, 0).] That is, viewed as a function
of ys and ts, G(·, ·;xs) will have significant Fourier coefficients for plane waves

eiω(Ps(ts)·ys+ts)

We characterize reflectors in the same way: that is, there is a (double) reflector at
(ys,yr) if R̄ has significant Fourier coefficients of a plane wave

ei(ks·y
′

s
+kr·y

′

r
)

for some pair of wavenumbers ks,kr, and for generic points (y′

s,y
′

r) near (ys,yr). Pre-
sumably then the product R(y′

s,x)G(y′

s, ts;xs) has a significant coefficient of the plane
wave component

ei((ks+ωPs(ts))·y′

s
+kr ·x+ωts)
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for y′

s near ys, x near yr; note that implicitly we have assumed that ys (the argument of
G) is located on a ray from the source with time ts. The right-hand side of equation (11)
integrates this product over ys. This integral will be negligible unless the phase in ys is
stationary: that is, to produce a substantial contribution to the RHS of equation (11), it
is necessary that

ys = Xs(ts), ks + ωPs(ts) = 0 (20)

Supposing that this is so, the remaining exponential suggests that the RHS of equation
(11) has a sizeable passband component of the form

ei(kr ·x+ωts)

for x near yr. As was argued above, this RHS will give rise to a significant plane wave
component in the solution u arriving at xr at time tsr = ts+tr exactly when a ray arriving
at xr at time tsr starts from a position in space-time with the location and wavenumber
of this plane wave, at time ts = tsr − tr: that is,

Xr(ts) = yr, ωPr(ts) = kr (21)

We end this appendix with a remark about the case of complete coverage, i.e. sources
and receivers densely sample a fully 2D area on or near the surface. Assuming that the
effect of the free surface has been removed, so that all events may be viewed as samplings
of an upcoming wavefield, the data (2D) event slowness uniquely determines the wavefield
(3D) slowness through the eikonal equation. Thus an event in the data is characterized
by its (3D) moveout: locally, by a moveout equation t = T (xs,xr), and infinitesimally by
the source and receiver slownesses

ps = ∇xs
T, pr = ∇xr

T

In this case, the data event uniquely determines the source and receiver rays.

APPENDIX C

This appendix gives the mathematical details leading to the conclusion:

energy in a properly filtered shot-geophone image volume is concentrated (i) at zero offset,
and possibly (ii) at offsets greater than a minimum which depends on various character-
istics of the velocity.

This conclusion depends on quantitative expressions of two conditions which are nec-
essary for reliable imaging, as discussed in the section “Combining horizontal and vertical
offsets”. The first of these is a quantitative version of the “maximum scattering angle”,
or MSA, condition. This hypothesis was shown to be essential for imaging already in
(Rakesh, 1988).

For any pair of rays (Xs,Ps), (Xr,Pr), the definition of the scattering angle θ is

‖v(Xs)Ps − v(Xr)Pr‖2 = 2(1 + cos θ)
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The quantitative MSA condition states that there is an angle θmax < π which is not
exceeded by any ray pair carrying significant energy.

At a physical scattering point x, where the rays meet, this means that

‖Ps −Pr‖2 ≥ 2(1 + cos θmax)v
−2(x)

The second condition is a quantitative version of the Traveltime Injectivity Condi-
tion, or TIC, which was shown to be necessary in general for artifact-free imaging in
(Ten Kroode et al., 1998). We assume that a constant K > 0 exists so that for any two
rays Xs,Xr meeting at time ts,

‖Xs(ts + τ) −Xr(ts + τ)‖ ≥ K
|τ |√

1 + τ 2
(22)

That is, for small τ , points on the two rays at times ts + τ are moving away from each
other at rate K, and for large τ are asymptotically at least K apart.

In general, if source and receiver rays (Xs,Ps), (Xr,Pr) produce an image point for
F̄z (i.e. with Xs,z(ts) = Xr,z(ts) then we inherit a trajectory of imaging points for the
unrestricted shot-geophone migration operator

τ → (Xs(ts + τ),Xr(ts + τ))

One of these is an image point for F̄z if Xs,z(ts+τ) = Xr,z(ts−τ). From the ray equations,

d

dτ
[Xs,z(ts + τ) −Xr,z(ts + τ)] = v2(Xs(ts + τ))Ps,z(ts + τ) − v2(Xr(ts + τ))Ps,z(ts + τ)

Suppose that the velocity is correct, so that the rays image at zero offset: Xs(ts) =
Xr(ts) = x. Then

d

dτ
[Xs,z(ts + τ) −Xr,z(ts + τ)]τ=0 = v2(x)

kz

ω

From the slowness part of the ray equations, it follows that
∥

∥

∥

∥

d

dτ
v−2(Xa(ts + τ))

d

dτ
[Xa(ts + τ)]

∥

∥

∥

∥

≤ L,

in which a is either s or r and L is a global bound for ‖∇ log v‖. From this is is easy to
deduce that another global constant M > 0 exists, depending on L and on the max and
min values of v, so that

∣

∣

∣

∣

d2

dτ 2
[Xs,z(ts + τ) −Xr,z(ts + τ)]

∣

∣

∣

∣

≤ M

for all τ . Thus the smallest nonzero value of τ for which

Xs,z(ts + τ) −Xr,z(ts + τ) = 0
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has size proportional to kz:

|τ | ≥ 2

M
v2(x)

∣

∣

∣

∣

kz

ω

∣

∣

∣

∣

(23)

The foregoing suggests that as kz → 0, i.e. as reflector dip approaches vertical, then
other points with arbitrarily small timeshift may image under application of F̄z, and
indeed this is the case. Even worse from the point of view of velocity analysis, focussing
at hx, hy = 0 is lost: according to quantitative TIC (equation (22)), one would expect
that the imaging offset would vanish along with the time perturbation τ .

For a horizontal offset reflectivity of the form Rz(xs, ys, xr, yr, z), define Ez to be the
operator, already introduced, which produces a source-receiver reflectivity function:

EzRz(ys,yr) = r

(

xs, ys, xr, yr,
zs + zr

2

)

δ(zs − zr)

Define Ex and Ey similarly. If R is a physical reflectivity, i.e. R(ys,yr) = r((ys +
yr)/2)δ(ys − yr), then there are restricted offset reflectivities Rx, Ry, and Rz for which
R = ExRx = EyRy = EzRz, eg. Rx(x, ys, zs, yr, zr) = r(x, (ys + yr)/2, (zs + zr)/2)δ(ys −
yr)δ(zs − zr). That is, a physical reflectivity can be represented as the output of any of
the three operators Ex, Ey, Ez.

Pick a number α > 1. In Appendix D we show how to construct a triple of spatial
filter operators Ψx, Ψy, Ψz so that

•
Ψx(ks,kr) + Ψy(ks,kr) + Ψz(ks,kr) ≡ 1

for all (ks,kr);

•
Ψx(ks,kr) = 0 if |ks,x + kr,x| < α−1

√

|ks,x + kr,x|2 + |ks,z + kr,z|2

Ψx(ks,kr) = 1 if |ks,x + kr,x| > α
√

|ks,x + kr,x|2 + |ks,z + kr,z|2

and similarly for Ψy, Ψz.

If the reflector wavenumber (ks,kr) is such that Ψz(ks,kr) > 0, then from the defining
properties of Ψz it follows that

(1 + α2)
|ks,z + kr,z|2

ω2
≥ ‖ks + kr‖2

ω2
= ‖Ps − Pr‖2

≥ 2(1 + cos θmax)v
−2(x) (24)

Introduce filters Ψ̄x, Ψ̄y, and Ψ̄z on restricted offset reflectivities, defined by the rela-
tion

ΨxEx = ExΨ̄x (25)
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and similarly for Ψ̄y and Ψ̄z. These filters have the properties

Ψ̄z(ks,x, ks,y, kr,x, kr,y, kz) = 0 if |kz| < α−1
√

|ks,x + kr,x|2 + |ks,y + kr,y|2

Ψ̄z(ks,x, ks,y, kr,x, kr,y, kz) = 1 if |kz| > α
√

|ks,x + kr,x|2 + |ks,y + kr,y|2

and similarly for Ψ̄x, Ψ̄y.

Now suppose that horizontal offset reflectivity Rz contains a physical reflectivity

Rz(xs, ys, xr, yr, z) = r(x, y, z)δ

(

x − xs + xr

2

)

δ

(

y − ys + yr

2

)

+ ...

and that there is a significant component with of the physical reflectivity with vertical
wavenumber kz after filtering by Ψ̄z. THat is, for rays (Xs,Ps), (Xr,Pr) and scattering
time ts, the rays intersect at x with the scatterer wavenumber ω(Pr(ts) −Ps(ts)) having
z component kz. From relations (25, 24) it follows that

k2
z

ω2
≥ 2(1 + cos θmax)

(1 + α2)
v2(x) (26)

From inequalities (26, 23), it follows that any other point on these two rays which are
imaged in Ψ̄zRz , i.e. at which Xs,z(ts + τ) = Xr,z(ts + τ) for some τ , requires that

|τ | ≥ 2v(x)

M

√

2(1 + cos θmax)

(1 + α2)
(27)

The relations (27, 22) therefore imply that any such secondary image point must occur
at an offset (hx, hy) = (Xs,x(ts + τ) − Xr,x(ts + τ),Xs,y(ts + τ) − Xy,x(ts + τ)) satisfying

h2 ≡ h2
x + h2

y ≥ h2
min (28)

in which hmin depends on max and min values of velocity and velocity gradient length,
θmax, the TIC constant K, and the filter aperture α.
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Fig. 1. Ray theoretic relation between data event and double reflector.
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Fig. 2. Ray theoretic relation between data event and physical (single) reflector.
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Fig. 3. Ray geometry for double reflector with horizontal offset only
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Fig. 4. Image gathers of data from random reflectivity, from left to right: correct
velocity, 10% high, 10% low
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Fig. 5. Lens velocity model, reflector, and modest-offset rays.
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Fig. 6. Lens model: shot record, offset -.5 km
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Fig. 7. Lens model: Kirchhoff common offset image gather, x = 0.3 km.
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Fig. 8. Lens model: Kirchhoff common scattering angle image gather, x = 0.3 km.
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t , t

s

r s

Fig. 9. For a non-vertical reflector (non-horizontal dip), equal time points on incident
and reflected rays must have z coordinates differing by an amount proportional to the
time difference, at least for times near the reflection time. Therefore horizontal offset
image gathers with exhibit focussing only at zero offset or at offsets considerably greater
than zero.
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Fig. 10. Incident and reflected rays on a vertical reflector (horizontal dip) may have a
sequence of equal time points near the reflection time at which the z coordinates of the
rays remain the same - therefore the horizontal offset image gather will contain energy at
a range of offsets including zero.
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Fig. 11. Left: image of the reflector in the model of Figure 5, obtained by prestack migra-
tion of the lens data (Figure 6 shows one of 401 shot gathers), using a depth extrapolation
algorithm (Prucha et al., 1999). Center: horizontal offset image gather extracted from the
volume, midpoint = center of lens. Right: scattering angle CIG for same data, computed
as described in (Prucha et al., 1999).
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Fig. 12. Acoustic model with linearly increasing velocity and vertical reflector near left
edge. Note that dimensions of this model, and frequency ranges of the synthetics obtained
from it, are appropriate for near-surface seismology rather than for petroleum exploration.
The acquisition geometry is indicated along the top of the figure: 111 source and receiver
positions occupy horizontal offsets from 40 m to 150 m, at 1 m intervals.
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Fig. 13. Shot 50 out of 111, simulated via a frequency domain finite difference method.
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Fig. 14. Horizontal offset image gather at the location of the reflector in Figure 12.
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Fig. 15. Vertical offset image gathers at 30, 35 m depth for synthetic data from Figure
12.
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Fig. 16. Filtered horizontal offset image gather at the location of the reflector in Figure
12.
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S R

Fig. 17. Cartoon suggesting that zero-offset focussing of restricted offset image gathers
may be a local property when rays can turn arbitrarily. The figure is meant to suggest
that the generalized image points indicated by the red dots, which are horizontally offset
from each other, may have the same total travel time as the physical image point (black
dot).
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