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ABSTRACT

The Claerbout extension of linearized seismic modeling provides a framework for
velocity analysis and imaging. It extends the reflectivity volume by introducing ad-
ditional degrees of freedom, in subsurface offset. The generalization to nonlinear
scattering makes the velocity field into an operator, the kernel variables of which play
the role of the “sunken” source and receiver in the linear theory. Formal linearization
of this nonlinear extended scattering model about the multiplication operator by a
positive velocity field recovers Claerbout’s linear extended model. The generalization
to (anisotropic) linear elasticity is straightforward.

Extended Scattering

Let V denote the bounded measurable functions on R3 whose reciprocals are also
bounded. The acoustic (constant density) scattering operator F : V → L2(Y ) is defined
by

F [v] = u(·, ·, ·; v)|Y
where the acoustic potential field u(x, t,xs; v) satisfies(

v−2 ∂2

∂t2
−∇2

)
u(·, ·,xs; v) = w(t)δ(x− xs) (1)

with appropriate initial and boundary conditions, and Y = {(xr, t,xs)} is the acquisition
manifold.

Note that the field u only has properties which allow identification of L2(Y ) as the
range under special circumstances, eg. when v is smooth near source and receiver points
and the source wavelet w is square-integrable.

Denote by V̄ the bounded positive selfadjoint operators on L2(R3). Given v̄ ∈ V̄ , the
generalized acoustic potential field ū(x, t,xs; v̄) satisfies(

v̄−2 ∂2

∂t2
−∇2

)
ū(·, ·,xs; v̄) = w(t)δ(x− xs) (2)
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The extended forward modeling operator is

F̄ [v̄] = u(·, ·, ·; v̄)|Y

Define the extension map χ : V → V̄ by

χ[v]f(x) = v(x)f(x), f ∈ L2(R3)

χ is continuous, eg. with the L∞ norm in domain and the operator norm in the range.

Note that F̄χ = F , so the foregoing actually does define an extension of F .

Linearization

Formally expand F̄ about χ[v0], v0 ∈ V :

F̄ [χ[v0] + δv̄] ' F [v0] + DF̄ [χ[v0]][δv̄]

The formal perturbation operator DF̄ is given by

DF̄ [χ[v0]][δv̄] = δū|Y ,

where (
v−2

0

∂2

∂t2
−∇2

)
δū(·, ·,xs; v0, δv̄) = 2v−1

0 δv̄

[
v−2

0

∂2u0

∂t2
(·, ·,xs; v0)

]
(3)

and u0 solves (1) with v = v0. Introduce the Schwarz kernel R of the operator 2v−1
0 δv̄v−2

0 :

(2v−1
0 δv̄v−2

0 )f(x̄r) =
∫

dy R(x̄r, x̄s)f(x̄s)

and the causal Green’s function (retarded fundamental solution) G0 of the operator on
the left hand side of (3). Then we can write

DF̄ [χ[v0]][δv̄](xr, t,xs) =
∫ ∫ ∫

dx̄r dx̄s dt′ G0(xr, t− t′, x̄r)R(x̄r, x̄s)G0(x̄s, t
′,xs) (4)

which is immediately recognizable as the Claerbout extension of the linearized acoustic
scattering operator, with extended reflectivity volume R(x̄r, x̄s), see eg. (Biondi et al.,
2003). The reason for the peculiar notation is now also clear: x̄s and x̄r are the “sunken”
source and receiver coordinates of Claerbout’s conception.

“Physical” reflectivity corresponds to δv̄ in the range of χ, which is equivalent to R
taking the form

R(x̄r, x̄s) = r(x̄s)δ(x̄r − x̄s)

in which r = 2v−3
0 δv and the kernel of δv̄ is δv(x̄s)δ(x̄r − x̄s). For such “physical” R, (4)

defines the usual linearized or “Born” scattering operator with reflectivity volume r.

For a more complete account of the relation between this extension of Born scattering
and Claerbout’s survey-sinking shot-geophone migration concept (Claerbout, 1985), see
(Symes, 2002; Stolk and De Hoop, 2001).
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As explained (Stolk and De Hoop, 2001), for instance, the “DSR” assumption, that
rays carrying significant energy do not turn horizontal, naturally invites partial imposition
of the “physical” constraint, by requiring that

R(x̄r, x̄s) = R̃(x̄′r, x̄
′
s)δ(z̄r − z̄s) (5)

in which the prime denotes the horizontal coordinate subvector. This constraint also
makes sense in the nonlinear setting, in which it becomes

(v̄f)(·, z) = ṽ(f(·, z)). (6)

Here ṽ is a bounded measurable function of z with values in positive bounded selfadjoint
operators on L2(R2). Clearly (5) is the linearization of (6).

We will refer to both (5) and (6) as the DSR constraint.

The Layered Case

Suppose for simplicity that sources and receivers are assumed to occupy the same
depth plane, i.e. zr = zs, and write xr = (xr, yr, zr) etc. Define the medium model
v̄ ∈ V̄ to be layered iff the seismogram F̄ [v̄], and more generally the acoustic potential
field ū, depends only on the horizontal components of offset xr − xs, yr − ys, respectively
x− xs, y − ys. For physical media (v̄ = χ[v]) this implies that v = v(z). In general, it is
easy to see that v̄ is layered if and only if

v̄f(x̄r) =
∫ ∫ ∫

dx̄sCv̄(x̄
′
r − x̄′s, z̄r, z̄s)f(x̄s)

for some suitable distribution Cv̄, i.e. v̄ acts as a convolution in the horizontal variables.
Formally, the Fourier transform of Cv̄ in the horizontal variables should be positive, in
the sense of yielding a positive operator when evaluated on a positive test function.

With the imposition of the “DSR” constraint, the kernel may be expressed as

Cv̄(x̄
′, z̄r, z̄s) = c(x̄′, z̄s)δ(z̄r − z̄s)

Thus the “sunken source and receiver” points x̄s, and x̄r reside at the same depth level.

The action of v̄ (hence of F̄) in this case is computable inexpensively via the Fourier
transform, which also decomposes the evolution problem (2) into a suite of 1D problems:(

1

ĉ2(kx, ky, z)

∂2

∂t2
+ k2

x + k2
y −

∂2

∂z2

)
û(kx, ky, z, t) = w(t)δ(z − zs) (7)

Differential Semblance

A natural annihilator of the range of the extension map χ is given in terms of the
distribution kernel Cv̄ of v̄:

v̄ ∈ R(χ) ⇔ (x̄r − x̄s)Cv̄(x̄r, x̄s) = 0
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Define an operator W on L(L2(R3)) by multiplying the kernel by the offset function:

CWv̄ = φ(x̄r − x̄s)(x̄r − x̄s)Cv̄

in which φ ∈ C∞
0 (R3) is identically = 1 near the origin. Inclusion of such a cutoff is

necessary to render Wv̄ bounded, and also corresponds to practical necessity - computa-
tional implementations can use only a finite range of offsets. The operator W , so defined,
is continuous in the operator norm on L(L2(R3)) and vanishes on the range of χ.

As explained in for example (Symes, 2004), such an annihilator leads to a reformulation
of the seismic inverse problem. An optimization problem of differential semblance type
expressing this equivalence is

minv̄ ‖Wv̄‖H subj F̄ [v̄] = d (8)

The norm ‖ · ‖H should be a Hilbert norm on some subspace of L(L2(R3)); it is not clear
at this point what are the reasonable choices.

Approximation of (8) about a multiplication operator yields the differential semblance
problem studied in (Shen et al., 2003).

For the layered case, Fourier transform leads to an annihilator incorporating a factor
of ∇kx,ky , i.e. truly a differential semblance operator. The problem analogous to (8) is
similar to the plane wave differential semblance problem studied in (Symes, 1991).

Elasticity

The nonlinear generalization of the Claerbout extension is easy to formulate for any
variant of linear elasticity, and indeed for a wide class of linear hyperbolic systems. It is
required only that the equations of motion be written in the form(

A
∂

∂t
+ D · ∇

)
U = F

in which A is a positive definite bounded measurable symmetric matrix-valued function
of position, D is a 3-vector of constant matrices, and U and F represent the system
state and energy source respectively. For elasticity, U is a vector consisting of stress
and velocity components, and A is a block matrix whose blocks include ρI (ρ being the
material density) and the inverse Hooke tensor.

The Claerbout extension for such a system simply consists in replacing A by a positive
definite self-adjoint operator. Formally, the rest of the framework developed above carries
over without alteration. Of course, the acoustic scattering problem and its Claerbout
extension can be formulated in this way as well.
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