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ABSTRACT

We present a parsimonious representation of velocity models which allows for user-
defined placement of nodes. Mild restrictions are imposed on the data structure so
that a computationally efficient algorithm can be used to smoothly approximate nodal
values on finely sampled regular grids. The building block of the algorithm operates on
one-dimensional arrays, allows for user-defined control of smoothness and guarantees
that bounds are preserved. The specific data structure allows to carry out this process
recursively to obtain multi-dimension smooth and regularly gridded velocity models.

INTRODUCTION

A central problem of seismic modeling, imaging, and inversion techniques based on the
Born approximation is that of finding an accurate background velocity model. The choice
of model space to describe the background medium is therefore essential. On one hand
the parametrization should be sparse, to specify detail only where necessary and avoid
oversampling where the velocity varies only slightly. Unstructured meshes where the ve-
locity is specified at nodal values have typically been used for that purpose. On the other
hand, many seismic processing techniques (e.g. finite difference schemes) require that the
velocity field be represented on finely sampled regular grids and satisfy some smooth-
ness property. In particular, the background should be twice continuously differentiable
to justify the use of high-frequency asymptotics [Beylkin, 1985; Rakesh, 1988] inherent
to many seismic processing techniques. This is typically achieved in practice by cubic
spline interpolation [Brandsberg-Dahl et al., 2003]. The major drawback of cubic spline
interpolation is that explicit bounds which may be imposed on the nodal values are not
guaranteed to be satisfied by the respective interpolants. Such explicit bounds are, for
instance, essential for stability issues in finite difference schemes, or for controlling stretch
and aliasing in diffraction sum implementations.

In this paper, we propose a very flexible way of describing the medium characteristics, by
means of a parsimonious parametrization of the velocity field. Although not completely
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unstructured, it does provide considerable freedom to allocate nodes to zones of rapid
change in the model. Moreover, it is specifically tailored for a computationally efficient
algorithm to smoothly approximate nodal velocity values on regular grids, for models
of arbitrary dimensions, thereby preserving the order of explicit bounds on the velocity.
We show that the above requirements can be met by first interpolating the irregularly
sampled data on a sufficiently fine regular grid, and then applying a convolution operator
with an appropriate kernel to smooth the interpolated values.

A SPARSE VELOCITY MODEL

The originality of the model representation lies in the choice of the particular parametriza-
tion chosen. In 3-D, the continuous velocity field v(x, y, z) is defined relative to an or-
thogonal coordinate system with x and y as the horizontal axes and z as the vertical axis.
By analogy with the typical marine seismic acquisition geometry, the x-axis is referred to
as the in-line axis, while the y-axis is referred to as the cross-line axis. The velocity field
is sampled at coordinate triplets (yi, xij , zijk), i.e. vijk ≡ v(yi, xij , zijk).

z

x

y

Fig. 1. Partially Irregular Grids (PIGrids).

Figure 1 displays an example of such a velocity model. Each node on the diagram cor-
responds to a sample of the velocity field at a location (yi, xij , zijk). This hierarchical
data structure can be described as follows. To each cross-line coordinate yi corresponds
a x-z plane which in turns contains several “vertical wells”, one for each in-line coordi-
nate xij . Each of these wells contains many samples of the velocity at depth coordinates
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zijk. Because the resulting grids are non entirely unstructured, we dubbed them Partially

Irregular Grids (PIGrids).

Although the parametrization imposes a certain level of structure, it does allow for user-

defined placement of the nodes and thus allows for the sparse representation of complex
geologic structures. Variations in depth can be represented arbitrarily well, just as lateral
variations along the in-line direction can. Some limitations are imposed on how well lateral
variations along the cross-line direction are modeled, but this is not a severe limitation in
practice.

As we explained in the introduction, this sparse model representation cannot be used
as is by most seismic applications. Rather, it is usually necessary that the nodal val-
ues be smoothly interpolated onto a regular grid. The procedure used for the smooth
interpolation should also guarantee that explicit bounds imposed on the sparse model
parametrization carry on to the interpolated model. The next section describes a simple
1-D scheme to do so.

1-D SMOOTH APPROXIMATION

In this section, we consider the problem of interpolating and smoothing irregularly spaced
nodal values onto a 1-D regular grid. An example is shown on Figure 2. Again, each node
on the diagram corresponds to a sample of the velocity field at that location. An example
of an output regular grid is also shown on the diagram.

Fig. 2. The 1-D interpolation problem

The simplest piecewise polynomial interpolation is piecewise linear interpolation where
linear polynomials are used on each interval. This just means that the nodal points are
joined by straight lines. Formally, suppose that the regular grid consists of N + 1 equally
spaced points z0, . . . , zN that satisfy z0 < z1 < . . . < zN . Similarly, suppose that each node
on Figure 2 represents a pair (z̄k, v̄k), where v̄k ≡ v̄(zk) is a sample of the field at location
zk. We further assume that there are M + 1 such nodes ordered as z̄0 < z̄1 < . . . < z̄M .
Then the values of the velocity field on the regular grid are obtained as follows:

v(zi) =

[

1 −
zi − z̄k

z̄k+1 − z̄k

]

v̄k +
zi − z̄k

z̄k+1 − z̄k

v̄k+1, z̄k ≤ zi ≤ z̄k+1 (1)

Values at grid points outside the range [z̄0, z̄M ] are simply obtained by constant extension:

v(zi) = v̄0 for zi < z̄0 and v(zi) = v̄M for zi > z̄M (2)
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Before describing our method for smoothing piecewise linearly interpolated data, we
briefly review how a convolution operator can be used to make a function smoother.
In particular, we show how to construct B-splines using successive convolution of the box
function [Trefethen, 1996]. The convolution of two functions functions u and v is the
function u ∗ v defined by:

(u ∗ v)(x) ≡

∫

∞

−∞

dy u(x − y)v(y) =

∫

∞

−∞

dy u(y)v(x− y), (3)

assuming these integrals exist. Note that the convolution operation amounts to a moving
average of values u(x) with weights defined by v(x), or vice-versa. Suppose now that u is
the function

u(x) =

{

1
2

for − 1 ≤ x ≤ 1

0 otherwise

From the definition (3), it can be verified that

(u ∗ u)(x) =

{

1
2
(1 − |x|/2) for − 2 ≤ x ≤ 2

0 otherwise

and that

(u ∗ u ∗ u)(x) =











3
8
− 1

8
x2 for − 1 ≤ x ≤ 1

1
16

(9 − 6|x| + x2) for 1 ≤ |x| ≤ 3

0 otherwise

The three functions u, u ∗ u and u ∗ u ∗ u are plotted on Figure 3. Clearly, any function
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Fig. 3. B-spline construction

convolved with the function u becomes smoother, since the convolution amounts to a
local moving average. In the above example, u is piecewise continuous, and it is easily
seen that u ∗ u is continuous and has a piecewise continuous first derivative, and that
u ∗ u ∗ u has a continuous derivative and a piecewise continuous second derivative. In
fact, a convolution u(p) of p copies of u is a piecewise polynomial of degree p − 1 with a
continuous (p − 2)nd derivative and a piecewise continuous (p − 1)st derivative, and is
known as a B-spline [Trefethen, 1996].
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Fig. 4. Triangular kernel of width h = 20

Going back to our original problem, the above example shows that the convolution of
any function with the triangular kernel of Figure 3 (central panel) yields a cubic spline.
Therefore, to obtain a smooth (twice continuously differentiable) 1-D velocity model from
the piecewise linear function defined by (1), we can perform a 1-D convolution with a
triangular kernel similar to the function u ∗ u described above. The general form of the
kernel can be written as:

k(x) =







2

h

(

1 −
|x|

h/2

)

for − h
2
≤ x ≤ h

2

0 otherwise
(4)

The scalar h is a user-defined parameter which represents the smoothing width of the
convolution kernel: the larger h, the wider the kernel, and the more local averaging is
performed during the convolution. The ratio 2/h appearing in (4) is a normalization
factor determined so that:

∫

dx k(x) =

∫ h/2

−h/2

dx

[

2

h

(

1 −
|x|

h/2

)]

= 1.

In the example of Figure 3 (central panel), we had h = 4. An example of a kernel of
width h = 20 is shown on Figure 4.

Given the values of the velocity field obtained using (1) on a grid z0 < z1 < . . . < zN

with sampling interval ∆z, the smoothed velocity field is obtained by extending the grid
on both sides by an amount equal to the smoothing width h, and then performing the
convolution with kernel given by (4) on this extended grid. The discrete version of (3)
takes the form:

vs [q∆z] ≈ ∆z
P+N
∑

p=−P

v [p∆z] k [(p − q)∆z] , q = 0, . . . , N

Here P = h/∆z represents the number of discrete points that are added on each side of
the 1-D regular grid in order to perform the convolution, and vs denotes the smoothed
interpolated velocity field. An example of this 1-D smooth interpolation scheme is shown
on Figure 5. The sparse velocity model consists in this case of four nodal values. The
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Fig. 5. Piecewise linear interpolation followed by smoothing

output regular grid consists of 501 points, 4m apart with z0 = 0m, and zN = 2km. The
smoothing width of the convolution operator is h = 500m.

A key property of the scheme described above is that the resulting cubic spline is not

an interpolant of the original data, but rather an approximant (see Figure 5). This is
in contrast to standard cubic spline interpolation. The advantage of this construction
stems from the fact that it guarantees that the order is preserved, in the sense that the
approximant computed using bounds on nodal values is itself a bound for the approximant
obtained using the original data. Figure 6 provides a simple illustration of this basic fact.
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Fig. 6. Explicit bounds for the cubic spline approximant

The model consists of six nodal values (blue circles). The cubic spline approximant is
shown as the dotted blue line. We then define an upper bound for the nodal values,
that is, we keep the same location for the nodes but increase the associated values (red
crosses in Figure 6). The corresponding cubic spline approximant is shown as the red
solid line. Note that the order is preserved, i.e. the red line is an (uniform) upper bound
for the blue line. Using the same exact data, the cubic spline interpolants (thereby using
standard cubic spline interpolation) are displayed on Figure 7. In this case, the cubic
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spline interpolating the red crosses is not an uniform upper bound for the cubic spline
interpolating the original data. The order is not preserved in this case.
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Fig. 7. Explicit bounds for the cubic spline interpolant

The fact is that the scenario depicted in Figure 6 is guaranteed by the method. The
upper bound approximant is not a priori an upper bound for the original data (see the
node located at x = 0.6 in Figure 6). However, it is guaranteed to be an upper bound
for the cubic spline approximant computed with the original data. This is because the
convolution operator performs local averaging of piecewise linear functions.

EXTENSION TO MULTIDIMENSION BY RECURSION

We describe in this section the recursive algorithm used to perform the smooth approx-
imation of 2-D and 3-D velocity models. In the 3-D case, the output (regular) grid is
described by the total number of desired samples nz, nx and ny in the depth, in-line and
cross-line directions, respectively, along with the associated sampling intervals ∆z, ∆x,
and ∆y. The core of the algorithm consists precisely of the scheme that we described
in the previous section, namely piecewise linear interpolation followed by smoothing (via
convolution) of 1-D arrays. We will subsequently refer to this scheme as the SMPL op-
erator. The rest of the algorithm consists of re-arranging the data into 1-D irregular
samples which can then be treated by the SMPL operator. Considering the PIGrid exam-
ple displayed on Figure 1, the first step of the algorithm is rather simple: apply the SMPL

operator to each “vertical well” corresponding to a point (yi, xij) on the surface. The
result is shown on Figure 8. Note that each vertical well has the same structure, namely
it holds the same number of samples with an identical sampling interval ∆z. The second
step in the algorithm is illustrated on Figure 9, which displays a typical in-line section of
the model shown on Figure 8. This step consists of looping through the discrete z-axis,
forming irregularly samples at each level, and interpolating onto the regular samples along
the x-axis. Thus, there are a total of nz SMPL operations to perform at this stage. It is
important to note that the nodes (there are 4 of them in the example of Figure 9) remain
the same throughout this second step. Only the values of the velocity field at the nodes
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Fig. 8. Model after one step of SMPL

change from one level to the next. The resulting model is shown on Figure 10 (we only
display two planes for clarity). The third step in the algorithm proceeds in exactly the
same way. The iteration in this case is performed over the 2-D regular grid specified in the
x-z plane, and the irregular samples are formed along the cross-line direction. Note that
this step requires nx·nz applications of the SMPL operator. The resulting model consists
of 3-D regularly gridded and smooth velocity data.

The data structure used to implement PIGrids is described in more detail in the Appendix.
It has been designed so that the algorithm carrying out the procedure described above is
completely recursive, and dimension-invariant. Input PIGrids and output regular grids of
the same dimension are handled exactly as described above. The algorithm also behaves
sensibly when the input PIGrid and the output regular mesh have different dimensions.
Assuming that the target regular grid is m-dimensional and that the input PIGrid is
n-dimensional with m ≥ n, the SMPL operation consists of smoothly interpolating in the
normal way onto an n-dimensional sub-grid of the output regular grid and extending
by constant along the other axes. This can actually be very useful in practice, e.g. to
generate ”1.5D” and ”2.5D” models. The other direction, where m < n, is also very useful
and is handled in the obvious way, by outputting a slice in the 3-D case or a well in the
2-D case.
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Fig. 10. Model obtained after two steps of SMPL
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A 2-D EXAMPLE

Figure 11 (top panel) displays a 2-D (synthetic) velocity model, which, for the purpose of
this example, we consider as the true model. A PIGrid is overlaid on top on the model.
Each red line corresponds to a particular in-line coordinate, and each tick mark on these
lines represents a node. This PIGrid consists of 52 nodes. The velocity prescribed at
each of the nodes is precisely that at the corresponding location in the velocity model.
Note that the slowly-varying part of the model should be very well represented on this
PIGrid. On the other hand, there may not be enough nodes to represent accurately the
high-velocity zone in the middle of the model.

The bottom panel in Figure 11 displays the velocity field obtained after smooth ap-
proximation on a regular grid (the parameters used are nx = 201, nz = 101, and
∆x = ∆z = 10m). The smoothing width used in this example is h = 100m along
both depth and in-line directions. The overall result is quite acceptable. As expected,
the structure in the middle of the model is not very well resolved, and suggests that more
nodes be used. In fact, the result shows that variations along the depth and in-line direc-
tions can be well resolved with a small number of nodes, whereas variations not aligned
in the axis directions require a higher number of nodes.

CONCLUSIONS

We have presented and described a sparse, hierarchical parametrization of the velocity
which allows for user-defined placements of nodes. We also described an algorithm de-
signed to exploit the special hierarchical structure to perform the smooth approximation
efficiently, thereby allowing for user-controlled smoothness and guaranteeing that bounds
are preserved (in the sense explained above).

The algorithm is reversible, in the sense that the adjoint operators of the SMPL operator
and of the whole scheme have been implemented, thus allowing its use in gradient-based
optimization techniques. That is, it is possible to start from the sparse representation,
obtain a smooth model defined on a finely sampled regular grid, perform the optimiza-
tion (step) on that grid, and get back to the original model space. In particular, the
parametrization and the above algorithm have been used successfully in the context of
NMO-based differential semblance optimization [Li, 2004].
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Fig. 11. Top panel: 2-D velocity model with the sparse model overlaid.
Bottom panel: interpolated and smoothed model.
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APPENDIX A

In this appendix, we reveal some of the implementation details and describe how to
use the software in practice. The data structure representing PIGrids as well as the
algorithm performing the smooth approximation is implemented within the Standard
Vector Library (SVL) framework. This library is a collection of C++ classes which realize
in code the principal mathematical components of calculus in Hilbert space, and provides
the framework for coupling complex simulations and optimization algorithms. For detailed
descriptions of these classes and the design of SVL, see [Padula et al., 2004].

The implementation of PIGrids mimics that of Grids in SVL. PIGrids contain the ge-
ometric description of the nodes, whereas PIGridDatas contain the actual data values.
PIGrids are typically constructed using input files with a format specifically chosen to
allow their recursive construction, regardless of their dimension. The input files are given
the extension .pig. An example of such file in 3-D is:

ny total number of cross-line coordinates

y0 first cross-line coordinate

nx0 total number of in-line coordinates at y0

x00 first in-line coordinate

nz00 total number of depth coordinates at (y0, x00)

z000 v000 first (depth coordinate,velocity value) pair

0 asserts the above is a leaf

z001 v001 second (depth coordinate,velocity value) pair

0 asserts the above is a leaf

.

.

sw 0 100

sw 1 100

sw 2 100

Note that the smoothing widths (h in (4)) are specified at the bottom of the .pig file: sw
is a keyword, the following integer specifies the dimension (0 for cross-line, 1 for in-line,
2 for depth) and the subsequent float is the actual smoothing width to be applied in
that dimension. The many 0s appearing in the input files are essential to the recursive
construction of PIGrids, as they specify the nodes at the lowest levels of the tree (the
leaves). In this way, the construction can be performed using the same code, whether in
1-D, 2-D or 3-D.

The unary functions objects PIGridLoad and PIGridSave are used to read from and write
to file. For example, given a file “invel3d.pig”, the code to instantiate a PIGrid and the
associated PIGridData would look like:
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PIGrid pig(‘‘inpig3d.pig’’); // creates the geometry

PIGridData pigdata(pig); // allocates necessary storage

PIGridLoad pigload(‘‘inpig3d.pig’’); // instantiates data loader

pigload(pigdata); // loads data in storage

A PIGrid object owns a reference to a (regular) Grid object which specifies the structure
of the data contained by the leaves. For example, for the velocity model of Figure 1, the
leaves are simple nodes, i.e. 0-dimensional Grid objects. However, after one step of the
algorithm (see Figure 8), each leaf (in-line coordinates) in the tree has the structure of a
1-D Grid. Similarly, after two steps of the algorithm (see Figure 10), each leaf (cross-line
coordinates) has the structure of a 2-D Grid. The getSize() method is a key member
function of the PIGrid class, as it is used to specify the size of the PIGridData which
holds the data associated with a PIGrid object. Note that the appropriate size is the
total number of leaves times the size of the Grid object specifying their structure (note
that a 0-dimensional grid has size 1, for it does contain a single scalar).

The binary function object MasterSMPLFwdInterpFO performs the recursive smooth ap-
proximation. It takes a PIGridData as input and outputs a corresponding GridData,
assuming that the underlying PIGrid and Grid are compatible. As we mention before,
the core of the algorithm is the SMPL operator which operates on 1-D arrays. The rest
of the algorithm consists of re-arranging the data into 1-D arrays: the hierarchical data
structure used to describe PIGrid makes this very easy to implement.
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