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Summary

Prestack wave equation migration using the double square
root equation produces prestack image volumes free of
artifacts, even in the presence of multipathing due to
complex structure. In particular image gathers in angle
or offset ray parameter are flat at correct velocity, and
gathers in offset are concentrated at zero offset. Differ-
ential semblance measures the deviation from flatness
or concentration, and provides a method of automatic
velocity updating via optimization. The adjoint state
method gives a convenient computation of the differential
semblance gradient as an addendum to prestack depth
extrapolation.

Introduction

Migration methods based on one way depth extrapolation
or downward continuation of data have a long history in
seismic imaging, see e.g. (Claerbout, 1985) and references
cited there. When data is given at all midpoints and off-
sets, then an approximation of data that would have been
measured at some greater depth can be obtained by solv-
ing the so called double-square-root (“DSR”) equation, a
one-way wave equation in both source and receiver coor-
dinates (this is the so-called “survey sinking” concept).
In general of course not all data is available, but in this
case data is still given by upward continuation, followed
by restriction to acquisition set. Depth imaging using
downward continuation is then essentially the adjoint of
the upward continuation. It has been observed that vari-
ous relaxations of the usual imaging condition permit the
construction of prestack image volumes, in particular so-
called image gathers, by one-way wave equation methods
(Claerbout, 1985; de Bruin et al., 1990; Prucha et al.,
1999; Sava et al., 2001).

Depth migration requires a velocity model, and prestack
depth image volumes have characteristics which assist
in velocity model construction. The semblance princi-
ple states that prestack image gathers are flat (or, in
some cases, well-focused) when velocity models are cor-
rectly chosen. This principle underlies all practical ve-
locity analysis methods based on prestack data, from
NMO velocity spectra to migrated-domain tomography.
The principle is not valid in complete generality, how-
ever. Strongly refracting models (“complex structure”)
generate multiple ray paths from sources and/or receivers
to scattering points, and these in turn lead to imaging
artifacts, i.e. coherent energy not corresponding to ac-
tual reflectors, for many common imaging methods. As
a result, the image gathers created by common migration
techniques are not flat even when the velocity is kine-
matically correct, and the semblance principle is violated.

This phenomenon was first demonstrated and explained
by Nolan (Nolan and Symes, 1996; Nolan and Symes,
1997), using two-way reverse time common shot imaging;
artifacts also occur generically in image gathers produced
by Kirchhoff common shot, common offset, and common
scattering angle migration (Stolk, 2001; Stolk and Symes,
2002).

Wave equation migration can equally well serve as the
basis for velocity analysis (Claerbout, 1985). The present
paper is motivated by the recent discovery (Stolk and
De Hoop, 2001) that wave equation imaging based on the
DSR equation yields artifact-free images even in the pres-
ence of severe multipathing, and thus that the semblance
principle holds for DSR migration. This fact guaran-
tees that certain functions constructed from image gath-
ers vary smoothly with velocity and attain their global
minimum at kinematically correct models. These differ-
ential semblance (“DS”) functions thus provide a system-
atic method for updating velocity models via optimiza-
tion (Symes, 1986; Symes and Carazzone, 1991; Symes,
1998; Chauris and Noble, 2001; Mulder and ten Kroode,
2002; Brandsberg-Dahl et al., 2002). The version of DS
introduced here has these properties for general veloc-
ity models, constrained only by the assumptions underly-
ing migration in general (single scattering, velocity slowly
varying on the wavelength scale) and DSR migration in
particular (rays involved in imaging are nowhere horizon-
tal). The DS-DSR combination should provide construc-
tive velocity updates even in structurally complex, highly
refracting zones such as salt flanks and chalk bodies, pre-
cisely the situations in which optimization based velocity
analysis is potentially the most useful.

This paper gives precise definitions for several versions
of differential semblance based on DSR migration, and
describes an economical method for computing the DS
gradient as an extension of the depth extrapolation pro-
cess. The gradient, computed as described here, provides
a search direction in velocity space for a modest additional
computational cost beyond that for a migration.

Wave equation common image gathers

Our computations are valid both for 2 or 3 space dimen-
sions. Horizontal (or lateral) position will be denoted by
x (a 1- or 2-vector, respectively), or when it refers to a
source or receiver position by s or r. Depth will be de-
noted by z. The medium velocity is c = c(x, z). The
frequency variable for time t is ω.

Wave-equation migration is based on downward continu-
ation of data d(s, r, t) or d(s, r, ω). The downward con-
tinued field u(s, r, ω, z) satisfies the DSR wave equation
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(Claerbout, 1985):

∂u

∂z
= F [c]u, u|z=0 = d (1)

where F [c] is the DSR operator

F [c] = −iω
√
c(s, z)−2 − ω−2D2

s− iω
√
c(r, z)−2 − ω−2D2

r .
(2)

in which Ds = −i ∂
∂s

(multiplication by ks in Fourier do-
main), etc.

If the acquisition geometry is incomplete (sparsely sam-
pled source-receiver pairs), as is usually the case, d(s, r, t)
is understood to be padded by zero traces to complete the
sampling in s, r. Of course then the downward continued
field cannot be the physical reflected field, as the neces-
sary surface data is lacking: that is, it is not possible to
literally “sink the survey”. Instead, as explained in (Stolk
and De Hoop, 2001), the DSR migration operator is the
adjoint of the DSR (prestack) forward modeling operator,
whether the acquisition geometry is complete or not. For
this reason, the migration output has its high frequency
energy in the correct places, hence produces a structural
image, even though the downward continued field is not
literally the data that would have been measured with
sources and receivers sunk into the Earth.

Note that the critical assumption in the derivation of this
equation is that rays carrying incident energy from source
to reflection point, and reflected energy from reflection
point to receiver, do not have horizontal tangents, i.e.
along such rays |∂z/∂t| 6= 0. In fact to assure stability
of depth extrapolation waves traveling near horizontally
must be suppressed. This suppression is built into numer-
ical realizations of DSR migration.

The depth image at (x, z) is extracted from the downward
continued field by setting s = r = x and t = 0 (Claer-
bout, 1985). This imaging condition does not address
the formation of prestack volumes, however. Several def-
initions have been suggested for common image gathers,
differing in the choice of gather parameter and method of
formation:

0. (Claerbout, 1985): parametrized by half offset h, via
restriction to t = 0:

V0(x, z, h) = u(x+ h, x− h, 0, z)

1. (de Bruin et al., 1990; Prucha et al., 1999):
parametrized by offset ray parameter p, via Radon
transform in the offset/time, followed by restriction
to t = 0:

V1(x, z, p) = (2π)−1×∫ ∫
u(x+ h, x− h, ω, z)e−iωp·hφ(h) dh dω. (3)

2. (Sava et al., 2001): parametrized by offset/depth
slope q, via restriction to t = 0 followed by Radon
transform in depth and offset:

V2(x, z, q) = (2π)−1×

∫ ∫
u(x+ h, x− h, ω, z + qh)φ(h) dh dω.

Here φ(h) is a cutoff function (mute). [NB: this
section (as well as V1) can be viewed as function of
reflection angle rather than slope (or offset ray pa-
rameter), via simple relations between these quanti-
ties; see (Sava et al., 2001).]

Wave-equation differential semblance

Each of the prestack gather definitions enumerated in
the last section has its characteristic signature of
kinematically correct velocity:

0. V0(x, z, h) is focused, or concentrated, at h = 0, so
hV0(x, z, h) ' 0;

1. V1(x, z, p) is essentially p-independent, i.e. the fixed-
x (“image”) gathers are flat in p, so

∂V1

∂p
(x, z, p) ' 0

2. V2(x, z, q) is essentially q-independent, i.e. the fixed-
x gathers are flat in q, so

∂V2

∂q
(x, z, q) ' 0

These criteria lead to three closely related differential
semblance functions, which vanish approximately at cor-
rect velocity and vary smoothly with velocity, regardless
of data bandwidth. We describe the first two cases ex-
plicitly; the third is similar. In all cases, the differential
semblance function is

J [c, d] =
1

2

∫
dx

∫
dz

∫
dy |PV (x, z, y)|2

where the bin parameter y and the DS operator P are as
follows:

0. y = h and P = P0, P0V (x, z, h) = hV (x, z, h).

1. y = p and P = P1,

P1V (x, z, p) = (2π)−1×∫ ∫
u(x+ h, x− h, ω, z) 1

iω

∂

∂p
e−iωp·hφ(h) dh dω.

(4)

=

∫ ∫
hu(x+ h, x− h, ω, z)e−iωp·hφ(h) dh dω.

The last equality reveals the close relation between the
two DS operators P0 and P1. This relationship justifies
calling the operator P0 a differential semblance operator,
even though it expresses concentration or focusing rather
than invariance with respect to a bin parameter: it is
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actually the (x, t) representation of a bona fide differential
semblance measure in (p, τ).

Numerical solution and gradient computation

Equation (1) is solved numerically by (i) approximating
the DSR operator F [c] using one of several methods which
render its action computable with reasonable efficiency,
and (ii) discretization of the approximation using spa-
tial and/or spatial frequency gridding, coupled by dis-
crete Fourier transform, and by an (explicit or implicit)
depth-marching scheme.

An enormous literature exists on computable approxima-
tions to F [c]; see for example (Claerbout, 1985; De Hoop
et al., 2000). (De Hoop et al., 2000) and references cited
there describe so-called Generalized Screen propagators
which approximate the square roots by sums of the form

L∑
α=1

fα(c(x, z), z, ω) (Fx)−1 (gα(k, z, ω)(Fxu)(k, z, ω)) .

(5)
in which Fx denotes the Fourier transform in x. The series
ceases to approximate the square root near 1 = c(x, z)k/ω
to suppress horizontally traveling energy.

Gridding an approximation as just described by discrete
sampling and discrete Fourier transform produces a dis-
crete DSR operator F̃ [c]. Replacing F [c] by F̃ [c] on the
right-hand side of (1) leads to a system of ordinary differ-
ential equations. These can be solved approximately by
an explicit or implicit method, the best choice depending
on the characteristics of F̃ [c]. We will represent implicit
schemes as formally explicit. The result is a depth march-
ing scheme of the form

un+1 = un + ∆zΦn[c]un (6)

in which un = un(s, r, ω) ' u(s, r, ω, n∆z) is the down-
ward continued field and Φn[c] is an extrapolation op-
erator which derives from applying eg. a Runge-Kutta
formula to F̃ [c]. For the simplest scheme, forward Eu-

ler, Φn[c] = F̃ [c(·, n∆z)]; more complex schemes involved

combining values of F̃ [c(·, z)] for various depths z. Φn[c]
depends functionally on c(x, z); the actual dependence
depends on the choice of lateral and depth discretization,
on the choice of approximation to the DSR operator, and
on the choice of depth marching scheme.

After discretization, the differential semblance functions
introduced in the last section have the form

J [c, d] =
1

2

∑
n

∑
x,y

|Pun|2

in which P , the semblance operator, is independent of n
(at least in our examples) and produces an output de-
pending on midpoint x and a second variable y, which
is offset, offset ray parameter, or vertical ray parameter
according to the selection made in the last section.

The perturbation δJ in J resulting from a perturbation
δc in c is

δJ [c, d] =
∑
n

∑
x,y

(Pun)(Pδun)

=
∑
n

∑
s,r

(P ∗Pun)(δun)

in which P ∗ denotes the adjoint operator to P and δun
solves the linearization of (6):

δun+1 = δun + ∆zΦn[c]δun + ∆zδΦn[c]un (7)

Define the adjoint field wn(s, r, ω) as the solution of the
adjoint state equation

wn−1 = wn + ∆zΦ[c]∗wn + ∆zP ∗Pun (8)

which is to be solved in order of descending n (i.e. upward
continuation) with initial condition wn = 0 for large n,
and the superscript ∗ denotes the adjoint or transpose
operator. Then

δJ [c, d] =
1

∆z

∑
n

∑
s,r

(wn−1 − wn −∆zΦ[c]∗wn)δun

=
1

∆z

∑
n

∑
s,r

(wn)(δun+1 − δun −∆zΦ[c]δun)

which is, from (7),

=
∑
n

∑
s,r

wnδΦn[c]un

Now δΦ[c]u = ∂c(Φ[c]u)δc, in which ∂c denotes partial
derivative with respect to c. Denote by Ψ[c, u] the adjoint
of the operator δc 7→ ∂c(Φ[c]u)δc. Then

δJ [c, d] =
∑
x,z

(
∑
n

Ψ[c, un]wn)δc

from which we read off that the gradient of J is

∇cJ [c, d] =
∑
n

Ψ[c, un]wn

This method for computing the gradient of a function de-
pending on the solution of a differential equation goes by
the name adjoint state method, and originates in control
theory (Lions, 1971). It was introduced into the theory of
inverse problems by (Chavent and Lemonnier, 1974), and
further developed by (Tarantola, 1987) amongst others.

To summarize, to compute the gradient:

1. Downward continue the wavefield (compute un, n =
0, ..., N by solving (6));

2. Upward continue the adjoint wavefield (compute
wn, n = N, ...0 by solving (8));
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3. Apply the operator Ψ[c, un] to wn, which amounts to
a weighted crosscorrelation of un and wn, and sum
on n to obtain the gradient.

This computation involves several operators not ordinar-
ily needed in wavefield extrapolation imaging:

1. P ∗ and P ∗P (adjoint equation (8));

2. Φ[c]∗ (adjoint equation (8));

3. Ψ[c, u] (crosscorrelation operator for gradient syn-
thesis).

The operator P0 is self-adjoint, and the adjoints of P1

and Φn[c] are straightforward to compute. Only Ψn[c, un]
might seem a bit mysterious, but in fact its computation
is also quite straightforward. For example, for forward
Euler depth stepping, Φn[c] = F̃ [c(·, n∆z)], so (ignoring
discretization)

(Ψn[c, un]wn)(x) = Re

∫
dω

L∑
α=1

∂fα
∂c

(c(x, n∆z), n∆z, ω)

×
{∫

dr
[
F−1

s (gα(·, n∆z, ω) (Fsun) (·, r, ω))wn
]

(x, r, ω)

+

∫
ds
[
F−1

r (gα(·, n∆z, ω) (Frun) (s, ·, ω))wn
]

(s, x, ω)

}
which is to be summed into ∇cJ [c, d](x, z) at z = n∆z.
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