
Wave field extrapolation using a new

multiplication/convolution method

work in progress

Christiaan C. Stolk

ABSTRACT

In this paper we consider numerical methods for the acoustic equation, based
on evolution in one of the space variables. There is a range of methods that com-
pute alternatively in the Fourier and in the space domain, such as phase shift plus
interpolation (PSPI) and generalized screens (GS). In this paper we derive a more
general class of such methods using the one-way wave equation. We first discuss the
approximation of the square root operator. The evolution in depth is done by a “pre-
conditioned” ODE solver, where we use an easily computable approximate solution
and solve a differential equation for the difference with the exact solution. In this
setup the errors from the approximation to the square root operator and the evolu-
tion can be analyzed separately. Some features of our method are that it allows an
arbitrary range of medium velocities (by higher order interpolation before exponen-
tiation), large propagation angle and small error, where of course there is a trade
off with computational cost. Dampening of waves with near horizontal propagation
angles is introduced explicitly. We also propose adaptive depth stepping.

1. INTRODUCTION

Methods for solving the acoustic equation by evolution in depth are important in
applications, particularly in seismic data processing. There are many different methods
that mix computations in the Fourier and in the space domain. In this class of methods
one can distinguish between methods with finite-difference terms, such as Fourier finite-
difference (FFD) (Ristow and Ruhl, 1994), or Fourier finite-difference plus interpolation
(FFDPI) (Biondi, 2002), and methods that combine different terms computed in the
Fourier domain by space dependent weight functions. The latter include for instance
phase shift plus interpolation (PSPI) (Gazdag and Sguazzero, 1984), split-step Fourier
(SSF) (Stoffa et al., 1990), extended local Born (Huang et al., 1999), generalized screens
(GS) ((de Hoop et al., 2000)). There is a large flexibility in the setup of such methods,
in particular for methods of the second type. It appears that this flexibility is not fully

1

exploited in methods available in the literature. In this paper we derive a new generalized
screen method that has a better control of error and large angle behavior. We start from
a regularized single square root equation, that includes explicitly the zeroeth order terms
that determine the amplitude behavior. The latter is derived by known pseudodifferential
techniques.

We will have the following setup. The direction of evolution will be called the vertical
direction and denoted by z ∈ R, while the other directions will be denoted by x. The
dimension of space will be denoted by n. This work is valid for any n ≥ 2. Let U =
U(z, x, t) be the acoustics wave field, ν = ν(z, x) the medium slowness (inverse of the local
wave speed) and F = F (z, x, t) a volume source. The acoustic equation with constant
density is (−ν2∂2

t + ∂2
x + ∂2

z

)
U = F. (1)

We will generally consider this with a condition at z = 0

U(0, · , ·) = U0, (2)

and with the condition U = 0 for t < 0, and aim to compute the wave field for z > 0.

We will assume we are in a regime of geometrical optics, with wave length short com-
pared to the length scale of the medium variations. Then up- and downgoing waves can
be distinguished and the only coupling occurs for turning rays, where the vertical compo-
nent of velocity changes sign. It is well known that by using pseudodifferential operators,
the original acoustic equation can be transformed to a system of equations, such that
this property becomes apparent. We then obtain two indepent equations for the up- and
downgoing waves by removing the coupling term, and instead adding a pseudodifferential
term that will dampen the wave fronts with near horizontal propagation directions (sec-
tion 2). This results in the pseudodifferential equation given in (4). (Note that variations
in the medium coefficient with length scale comparable to the wave-length lead to reflec-
tions, coupling up- and downgoing waves. Hence some assumption is necessary if we want
to approximate solutions to (1).)

In general, after discretization, a pseudodifferential operator leads to a full matrix on
basis of position coordinate x and also on k, and its computation is expensive. On the
other hand when the coefficient ν is constant it is diagonal in the Fourier domain and its
exponential (a set of complex phase factors) can be computed easily over large step size.
This leads to an easily computable approximative solution when the coefficient varies not
too much around some value ν0. The idea is to obtain a fast and more accurate method by
adding correction terms to such an approximate solution (GS) or by combining two such
approximative solutions (PSPI). The expressions for the wave field propagated a small
distance in depth are of the form

∑
multiplications and convolutions of u0. (3)

This is evaluated by performing the convolution as a multiplication in the Fourier domain,
using FFT’s.

2

In this paper we consider approximations of the square root operator based on (3).
The square root symbol, which can be considered as a function of ν and k, will be
approximated by interpolation over ν. We consider piecewise Lagrange interpolation,
Hermite interpolation and interpolation by cubic splines. We thus generalize an idea
from generalized screens where a Taylor series approximation is taken around a single
support slowness ν0. Our approach allows in particular for larger opening angles and
slowness variations. We discuss the resulting errors and give examples. We also discuss
the discretization (section 3).

To solve the evolution equation we observe that the difference of the true solution with
an exponential approximate solution as described above satisfies a differential equation.
We propose to solve this equation by a numerical ODE solver (Runge-Kutta since this is
a convenient method). In this approach an error estimate is available, even during the
computation (in certain schemes), so that the stepsize can be chosen adaptively during
the computation.

Some of the features that we believe are advantages of this method are the following.
By increasing the number of ν support points in the interpolation the operator can be
approximated over an arbitrary range of medium velocities (before domain decomposi-
tion/averaging exponentials) and the error can be made small up to large angles (where
of course there is trade off with computational cost). We explicitly introduce dampening
of waves with near horizontal propagation angles that are not correctly propagated.

The organization of the paper is as follows. In section 2 we present the derivation of the
one-way wave equation. We include the zeroeth order terms that determine amplitude. In
section 3 we discuss the approximation of the square root operator B. Then in section 4
we discuss the solution of the evolution equation. We give some numerical examples in
section 5. We end with a discussion in section 6. In AppendixA some basic facts about
pseudodifferential operators are given that are relevant for the numerical approximation.
In AppendixB some functions are listed that are used to construct smooth approximations
to the square root.

2. THE SINGLE SQUARE ROOT EQUATION

In this section we derive a regularized one-way wave equation, given by

∂u

∂z
= (spiB − sdC) u + f. (4)

This equation describes the propagation of wave fronts as long as the angle of propagation
with the vertical is smaller than some maximal angle, and includes a dampening term to
suppress the (incorrectly propagated) remainder. The square root operator B, which
is a pseudodifferential operator, is defined in (9), and lemma 1. The operator C (also
pseudodifferential) is the dampening term described on page 6. The wave field u and the
source f are related to the original wave field U and source F by (18). The constants
sp = ±1 and sd = ±1 denote respectively the time direction of propagation (sign of
∂t
∂z

) and the direction of numerical evaluation (direction of damping). The equation is

3

derived in several steps from the first order system equivalent to (1). The final step is a
modification, where the term coupling up and down propagating waves is removed and
the dissipative term is added. Throughout the discussion we keep track of the zeroeth
order term in the square root equation, to have correct highest order amplitudes. The
pseudodifferential operator technique and the decoupling into first order equations are
classical in the mathematical literature (for the latter see e.g. (Taylor, 1975)).

We will use the following convention for the Fourier transform

Fxu(kx) = (2π)−(n−1)

∫

Rn−1

e−ikx·xu(x) dx, (5)

Ftu(ω) = (2π)−1

∫

R
e−iωtu(x) dt. (6)

2.1. FIRST ORDER SYSTEM AND PSEUDODIFFERENTIAL SQUARE
ROOT OPERATOR

The acoustic equation (1) corresponds to a first order system in z for the pressure U
and V = ∂U

∂z
, that is given by

∂

∂z

(
U
V

)
=

(
0 I
−A 0

)(
U
V

)
+

(
0
F

)
, (7)

where A is the second order differential operator defined by

A = −ν(x, z)2 ∂2

∂t2
+

∑
j

∂2

∂x2
j

.

Associated with A is its symbol A(z, x, kx, ω) = ν(x, z)2ω2 − |kx|2.
We will look for a pseudodifferential operator square root of A, B2 = A. Clearly B

must have principal symbol B(z, x, kx, ω) =
√

A(z, x, kx, ω), which is not smooth near the
zeroes of A. Therefore, for each z we consider the set of (x, t, kx, ω) where A is strictly
positive. Given ε > 0, such a set is given by

|ν−1ω−1kx| ≤ 1− ε, (8)

This will correspond to angles of propagation (with the vertical) up to θ where θ is given
by sin(θ) = 1− ε.

We will denote by b = b(z, x, kx, ω) the first and highest order symbol of a square root
of A on (8). Outside (8) we assume that b is real and smooth. There the symbol b must
be chosen such that the resulting numerical algorithm is optimal, we discuss this further
in section 3. As for the choice we sign, on (8) we set

b(z, x, kx, ω) = −ω
√

ν2 − ω−2k2
x. (9)

When the coefficient ν depends on x the square root operator also has a lower-order
part, that depends on the quantization, i.e. the way we associate an operator with b. We

4

summarize the results we need in the following lemma (see AppendixA for the definitions
of the different quantizations).

Lemma 1: There is a pseudodifferential operator B(z, x,Dx, Dt) such that B2 = A
modulo S−∞ on (8). Its symbol is given on (8) by

B(z, x, kx, ω) = b(z, x, kx, ω) + 1
2
ib(z, x, kx, ω)−1

n−1∑
j=1

∂b

∂kxj

∂b

∂xj

+ order(−1). (10)

The operator B(z, x, Dx, Dt) is also given by OpR BR, where

BR(z, x, kx, ω) = b(z, x, kx, ω)− 1
2
ib(z, x, kxj

, ω)−1

n−1∑
j=1

∂b

∂kxj

∂b

∂xj

+ order(−1). (11)

and by 1
2
(OpL BM + OpR BM), where

BM(z, x, kx, ω) = b(z, x, kx, ω) + order(−1). (12)

The proof (a standard construction order by order that is often useful) can be found
in the appendix.

2.2. TRANSFORMATION OF THE SYSTEM AND SINGLE SQUARE ROOT
EQUATION

Let Q be an invertible matrix pseudodifferential operator. Define (u+, u−) by

(
U
V

)
= Q

(
u+

u−

)
,

(
0
F

)
= Q

(
f+

f−

)
.

The transformed version of (7) reads

∂

∂z

(
u+

u−

)
= Q−1

(
0 I
−A 0

)
Q

(
u+

u−

)
+

∂Q−1

∂z
Q

(
u+

u−

)
+

(
f+

f−

)
. (13)

For the choice of Q, note that the eigenvalues of the symbol

(
0 I
−A 0

)
are given by

eigenvalues : ± iA(z, x, kx, ω)1/2, eigenvectors :

(
1

±iA(z, x, kx, ω)1/2

)
.

Like the square root B, we choose Q only on (8). On this set we set Q to highest order such
that its columns are eigenvectors, with some freedom in the normalization (the number

s, this will be chosen below). By Ãs we denote a pseudodifferential operator equal to As

5

microlocally on (8), smooth outside this set and with symbol As = (ν2ω2 − k2
x)

s/2 on (8).

Similarly B̃−1 is given by B−1 microlocally on (8) etc.

Q(z, x, kx, ω) = Ã−s

(
1 1
iB −iB

)
+ l.o.t., (14)

Q(z, x, kx, ω)−1 =
1

2
Ãs

(
1 −iB̃−1

1 iB̃−1

)
. + l.o.t., . (15)

Outside (8) we still require that Q is an invertible pseudodifferential operator of order(−2s −2s
1− 2s 1− 2s

)
. This leads to the following equation for (u+, u−)

∂

∂z

(
u+

u−

)
=

(
iB 0
0 −iB

)(
u+

u−

)
+

(
2s− 1

2
1
2

1
2

2s− 1
2

)
Ã−1

∂̃A

∂z

(
u+

u−

)
+ R

(
u+

u−

)
+

(
f+

f−

)
.

(16)
Here R is the sum of a lower order part, that is a pseudodifferential operator of order −1,
and a contribution that is a pseudodifferential matrix of order 1 supported outside (8).

To obtain correct highest order amplitudes, the operators on the right hand side of
(16) must be computed for the two highest order terms, i.e. first and zeroeth order terms,
while for the operator Q we are interested only in the highest term.

The second term in (17) is of zeroeth order. Its off-diagonal part can be removed on
(8) by adding lower order terms to Q, see (Taylor, 1975). This results in the following
equation

∂

∂z

(
u+

u−

)
=

(
iB 0
0 −iB

)(
u+

u−

)
+ (2s− 1

2
)Ã−1

∂̃A

∂z

(
u+

u−

)
+ R

(
u+

u−

)
+

(
f+

f−

)
. (17)

We take only the part of (17) inside (8), describing the propagating hyperbolic modes.
That is we consider a modification of (17) where

1. the operator R, that couples u+ and u− is removed.

2. an additional dissipative term given by a pseudodifferential operator C is added. We
require that its symbol C ≥ 0 is smooth, equal to zero on (8), and C > 0 where
B 6= A1/2.

Then a wave front is propagated correctly as long as its angle of propagation with the
vertical is smaller than θ. For larger angles it is suppressed by the damping term given
by C. There is no unique prescription for C, otherwise then the positivity requirement,
and this freedom should be exploited to make for good properties of the final numerical
scheme.

6

Summary We now give our one-way wave equation. We will set s = 1
4

so that the
second term on the r.h.s. of (17) vanishes. Denote by sp = ±1 the sign of ∂z

∂t
along

the propagation direction of the wave front. For sp = +1 we set u = u+, and we assume
u− = 0. Similarly, for sp = −1, we set u = u−, and we assume u+ = 0. We denote f = f±
corresponding to sp. Then we have

u = ÃsU f = − sp
1
2
iÃsB̃−1F. (18)

By sd = ±1 we denote the direction of the decay of the wave field outside (8), which should
equal the direction of numerical evaluation. With the modifications we hence obtain the
following equation from (17)

∂u

∂z
= (spiB − sdC) u + f.

3. APPROXIMATION OF THE SQUARE ROOT OPERATOR BY
MULTIPLICATIONS AND CONVOLUTIONS

3.1. THE METHOD

The application of pseudodifferential operators is in general expensive, because the
operator is not local in space coordinates, nor in Fourier coordinates. Direct evaluation
of (A-1) leads to an n dimensional Fourier transform for each x. In this case, we first
note that the operator B decouples when Fourier transformed with respect to the time
variable. Equation (4) can be Fourier transformed to the frequency domain, and solved
separately for each frequency.

From now on we will therefore assume that u is Fourier transformed with respect to
time, u = u(z, x, ω).

Consider the approximation of OpL b (which gives a correct highest order contribution
to the square root operator, see Lemma 1) that is now given by

OpL b u(z, x, ω) = (2π)−(n−1)

∫

Rn−1

∫

Rn−1

b(z, x, kx, ω)ei(x−y)·kxu(z, y, ω) dkx dy.

Consider an approximation of b of the following form

b(z, x, kx, ω) ≈
K∑

j=1

wj(x; z, ω)gj(kx; z, ω). (19)

Then the application of OpL b becomes

OpL b u ≈
K∑

j=1

wjF−1
x (gjFxu). (20)

A single term in the sum is hence obtained by first a transformation to Fourier space,
multiplication in Fourier space by g, then inverse Fourier transformation back to ordinary

7

space, and multiplication by w. For OpR b we have a similar formula with the order of
multiplication in position and Fourier domain interchanged

OpR b u ≈
K∑

j=1

F−1
x (gjFx(wju)) . (21)

To have correct zeroeth order term in the square root operator (see lemma 1) we will
use the symmetrized form 1

2
(OpL b + OpR b) for the square root operator. (Then the

square root operator is automatically selfadjoint, which is good. Also we don’t know an
approximation to (10) or (11), comparable to the approximation for (19) that we will find
below.)

The problem is to find K, wj and gj such that (19) is a good approximation. We
observe that b depends on x only through the medium slowness ν(x). This makes it
possible to use the following interpolation approach. Let S = {ν1, . . . , νK} be a set of
suitably chosen support slownesses. By standard numerical interpolation methods we can
find wj(ν) such that

b(ν) ≈
K∑

j=1

wj(ν)b(νj) (22)

is a good approximation to b(ν). Derivatives can also be included. Let α = α1, . . . , αK

be a vector of integers ≥ 1. There are wj,j′ , 0 ≤ j′ < αj such that

b(ν) ≈
K∑

j=1

αj−1∑

j′=0

wj,j′(ν)∂j′
ν b(νj) (23)

is a good approximation to b(ν). We will consider piecewise Lagrange or cubic spline
interpolation for (22) and piecewise Hermite interpolation for (23). All of these are stan-
dard, see textbooks on numerical analysis such as (Stoer and Bulirsch, 2002; Kincaid and
Cheney, 1996). The simplest case of Hermite interpolation is K = 1 (Taylor series ap-
proximation), which will roughly lead to generalized screens. With Hermite interpolation
the derivatives up to the specified order can be made continuous.

In Lagrange interpolation a single polynomial is found that has the same values as
a function f at the νj. For Hermite interpolation the derivatives up to order αj − 1 at
the νj must also agree. The unique polynomial of order K − 1 determined by S, and
a list of values F = {f(νj) | νj ∈ S} will be denoted by PLagrange(ν; Sl, F). Similarly

the unique polynomial of order −1 +
∑K

j=1 αj determined by S, α and a list of values

F = {∂j′
ν f(νj) | νj ∈ S, 0 ≤ j′ < αj} will benoted by PHermite(ν; Sl, αl, F). Denote by ej a

list of values which is zero except for the j-th element, and similarly for ej,j′ .

In piecewise Lagrange or Hermite interpolation we determine first the number l such
that ν ∈]νl, νl+1] (with ν0 = −∞, νK+1 = ∞). For each l we have a subset Sl ⊂ S of
support points. The weights wi for piecewise Lagrange interpolation are given by

wj(ν) =

{
PLagrange(ν; Sl, ej) νj ∈ Sl,
0 νj /∈ Sl.

(24)

8

For piecewise Hermite interpolation, let αl denote a number of derivatives for each ν ∈ Sk.
We then have

wj,j′(ν) =

{
PHermite(ν; Sl, αl, ej,j′) νj ∈ Sl and 0 ≤ j′ < αl,j.
0 νj /∈ Sl or j′ ≥ αl,j.

(25)

The following formula for the error is well known. Let n + 1 =
∑K

j=1 αj (where αj is 1 for
Lagrange interpolation) and let f be n + 1 times differentiable. Then the error satisfies

f(ν)− PHermite(ν; S, α) =
f (n+1)(ω)

(n + 1)!

∏
j∈S

(ν − νj)
αj ,

where ω is some unknown points in the interval I(S∪{ν}) := ([min(S∪{ν}), max(S∪{ν})].
A function obtained by piecewise interpolation (with constant order, i.e. constant number
of points used for interpolation) converges to f if the stepsize decreases.

In cubic spline interpolation we take αj = 1 and then there is a polynomial Pcubicspline,l

on each interval ν ∈]νl, νl+1], such that the resulting function as well as its first and second
derivatives are continuous. We take

wi(ν) = Pcubicspline,l(ν; S, ej). (26)

If the first derivatives at the end are also used, then there is an error estimate that gives
the size of the error in terms of distance between grid points etc., see (Stoer and Bulirsch,
2002, section 2.4.3).

The interpolation works for all kx, ω such that b(ν, kx, ω) is a number of times con-
tinuously differentiable w.r.t. ν on the interval of ν considered. It therefore is natural to
choose b to be regularized on a scale (given by ε above) comparable with the distance
between the νj (parameter ε above).

3.2. ERROR CRITERION

There are several quantities we must choose to obtain an approximation of the square
root operator. They are the regularized symbol b (must be chosen outside the set (8)), the
type of interpolation to be used in the approximation (19), the support point S and (in
piecewise Lagrange interpolation), the subset of support points used for each ν interval.
The first criterion is that the approximated symbol (8) has propagation velocities and
arrival times close to those of the correct symbol. We will thus give the expressions for
the velocities.

The error in the propagation velocity can be decomposed into a part parallel to the
correct velocity, and a part normal to the correct velocity. The first of these corresponds
roughly to the error in travel time, so we have naturally the following primary criterion.

Criterion 1 The inline velocity error is small up to some maximal angle.

As a secondary error criterion we have

Criterion 2 The orthogonal velocity error is small up to some maximal angle.

9

The example in subsection 3.3 suggests the following additional criterion. This concerns
the waves in the dampened region that are in principle suppressed.

Criterion 3 The velocity in the region just outside (8) is not much faster than the correct
wave front.

How important this last criterionis in must still be further studied (it is important in
particular when velocity decreases for increasing depth.)

In the following we will denote

p =
kx

−ω
(27)

We will consider approximations to the square root of the form

−ωνf(ν,
kx

−ω
), (28)

where f = f(ν, p) is a given function. Along a ray of geometrical optics we have

dt

dz
= − ∂b

∂ω
= νf(ν,

kx

−ω
)− ν

kx

−ω
∂pf(ν,

kx

−ω
) = νf(ν, p)− νp∂pf(ν, p), (29)

dx

dz
= − ∂b

∂kx

= −ν∂pf(ν,
kx

−ω
) = −ν∂pf(ν, p). (30)

The velocities vz = ∂z
∂t

and vx = ∂x
∂t

are given by

vz =
1

dt/dz
vx =

dx/dz

dt/dz
. (31)

3.3. EXAMPLES OF APPROXIMATED DISPERSION RELATIONS (SYM-
BOLS)

We will assume that the regularized square root b is a scaled version of a function of
a single variable. Let f(k) be a function on R, that is equal to

√
1− k2 on [−1 + ε, 1− ε].

We will choose b of the form

b(ν, kx, ω) = −ωνf(
kx

−ων
).

We will suppose the νi are all determined by ν1 and ν2/ν1 according to

νj = ν1(ν2/ν1)
j−1.

We will consider an example with order 2 piecewise Lagrange interpolation where

Sl = {νl, νl+1, νl+2}

(for 1 ≤ l ≤ K − 2, we will not consider ν such that l is outside this range).

The general approach is the following

10

1. Start with a family of functions fa,b, such that for

|k| . 1− a

the function fa,b is equal to the square root, and regularized outside this region,
where b denote possible additional parameters.

2. Fix a maximal angle, or equivalently ε in (8).

3. For each a, b we search for a maximum error (based on Criterion 1 and/or Criterion
2) as a function of ν, p, |p/ν| < 1 − ε, ν in a given interval. This maximum error
should be minimal, this gives a choice of a, b.

4. A more sophisticated approach would be to predetermine a maximal error and to
search for maximal value of ν2/ν1, so that the minimal number of FFT’s is necessary
in the evaluation of (20). This involves adjusting a, b and ν2/ν1.

We will now apply this to two families of functions, up to step 3. From now on in this
section we will denote by f the exact square root, in scaled coordinates

f(k) =
√

1− k2.

We study two classes of functions to approximate the square root, where in each class
we look for an optimal choice. We fix the ν2/ν1 = 1.1. The maximal k is given by 0.9
(maximal angle 64 degrees). We study the relative error in velocity (for the computations
we can set ν = 1, and vary the ν1).

The first function we take from a class such that a small imaginary part to the square
root, localized around |k| = 1. The main parameter is called a and describes the width
of the regularization, while there is another parameter b to describe its size.

f̃a,b(k) = Re
√

1− k2 + ia2b(h(3)(k − 1) + h(3)(k + 1)).

We computed the maximal error for an array of values of a, b. A choice close to optimal
for both the parallel and the orthogonal part of the error is a = 0.25, b = 1.4, with error
0.002, and 0.026. We denote this choice by f1.

The second function is obtained by modifying the derivative of the square root, such
that for k > 1 − a (for some a), it goes to a constant instead of to −∞. The derivative
of the square root is given by

f ′(k) = −k(1− k2)−1/2 (32)

We define a scaled version of h(2) (see AppendixB), denoted h(2),ã,b̃, that is the identity

on]−∞, ã], and constant equal to b̃ for y > b̃ + (b̃− ã). It is given by

h(2),ã,b̃(y) = ã + (b̃− ã)h(2)(
y − ã

b̃− ã
)

11

Now let ã = 1 − a, b̃ = 1 − ba. We choose f̂a,b such that its derivative is given by a
modification of (32)

f̂a,b
′(k) = f ′(h(2),ã,b̃(k))

That is

f̂a,b(k) = 1 +

∫ k

0

f ′(h(2),ã,b̃(k̃)) dk̃.

Again, for an array of choices for the parameter we computed the maximal error. A
roughly optimal choice is given by a = 0.22, b = 0.3 with error given approximately by
0.001 and 0.017. We set f2 = f̂0.22,0.3.

We compared the exact square root and the two optimized choices f1, f2. A plot of
f, f1, f2 is given in Figure 1. The corresponding velocity curves are given in Figure 2. We
see from Figure 2 that f1 has a wavefront that propagates faster than the correct wave
front. Although it appears that the function f2 does not have such a wave front, this is
not quite correct, since we will want f2 to become constant for some larger value of k,
but at least the phenomenon, if it appears will appear at larger k. The incorrect part of
the wave front will be in the region with damping, but for f2 it is much further in this
region, which is clearly preferable to make the method more robust.

An illustration of the behavior of the error (for different values of ν1) is given in
Figures 3 and 4. The errors are significantly smaller for f2, as was apparent already from
the numbers we mentioned (maximal inline error (travel time) 0.001 for f2, 0.002 for f1,
maximal orthogonal errors 0.017 and 0.026).

A conclusion would be that, at least in this example a function that “continuous
downward below zero” like f2 offers better behavior of the velocity curve (with regard to
the fast erroneous wave front further in the k-region), as well as the possibility for smaller
errors.

3.4. IMAGINARY PART

The dampening part can be included using the same approximation (19). The main
thing to check is that the interpolation does not lead to negative damping contribution
(blow up instead of damping), and that sufficient damping is present.

3.5. DISCRETIZATION

We consider here the discretization in the lateral coordinates x and kx. Suppose first
n = 2, so that x is of dimension 1. Suppose data is given on an evenly spaced grid with
N points and distance h, on the interval xmin = 0, xmax = Nh. In the Fourier domain we
have N points with grid distance 2π

Nh
, covering the interval [−kx,max, kx,max] where

kx,max =
π

h
,

We have to deal with the periodic nature of both position space and Fourier space
(periodicity in frequency domain related to aliasing, in space domain sometimes called

12

Fig. 1. The functions f, f1, f2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
k

-0.4

-0.2

0.2

0.4

0.6

0.8

1
DispersionCurves f,f1,f2

f2

f1

f

13

Fig. 2. Velocity curves associated with the functions f, f1, f2

0.2 0.4 0.6 0.8 1 1.2 1.4
vx

0.2

0.4

0.6

0.8

1

vz Velocity curves f,f1,f2

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1 f2

f1

f

Fig. 3. Errors in velocity parallel (inline) and orthogonal to correct velocity for f1

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02

0.025

0.03
Velocity errors f1

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02

0.025

0.03
Velocity errors f1

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02

0.025

0.03
Velocity errors f1

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02

0.025

0.03
Velocity errors f1

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02

0.025

0.03
Velocity errors f1

Total

Inline

14

Fig. 4. Errors in velocity parallel (inline) and orthogonal to correct velocity for f2

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02
Velocity errors f2

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02
Velocity errors f2

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02
Velocity errors f2

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02
Velocity errors f2

Total

Inline

0.6 0.7 0.8 0.9 1
k

0

0.005

0.01

0.015

0.02
Velocity errors f2

Total

Inline

“wraparound”). The symbols for the propagating and dissipative contributions b(ν(x), kx)
and c(ν(x), kx) must therefore satisfy

1. b(ν(x), kx) and c(ν(x), kx) must be smooth as periodic functions on [0, xmax] ×
[−kx,max, kx,max], i.e. values and derivatives at x = 0 and at x = xmax must agree,
same for kx,max and kx,max.

2. c > 0 at kx = ±kx,max

3. An additional dissipative term must be added, that is nonzero around x = 0 and
x = xmax. In the depth evolution below we will implement this by an explicit
exponential decay (and not solve a differential equation for this).

It appears that the width of the frequency band should be related to the scale of the
variations in the medium, since the variations in the medium cause the “spreading” in
the Fourier domain. The size of the x-interval around x = 0, x = xmax where the space
dissipative term is non-zero should probably be related to the maximal value of ∂x

∂z
, and

the maximal stepsize in the depth stepping algorithm (“fast” signal must not be able to
pass through it).

15

3.6. SUMMARY

The action of spiB(z, x,Dx, ω)− sdC(z, x, Dx, ω) is hence approximated by a discrete
operator

M(z)û = 1
2

K∑
j=1

wj(ν(z, ·))F−1
(
(ispb̂(νj)− sdĉ(νj))F û

)

+ 1
2

K∑
j=1

F−1
(
ispb̂(νj)− sdĉ(νj))F(wj(ν(z, ·))û)

)
. (33)

The differential equation reads
∂û

∂z
= M(z)û. (34)

4. SOLUTION BY NUMERICALLY SOLVING A “PRECONDITIONED”
ODE

4.1. THE “PRECONDITIONED” ODE

When the coefficient ν is equal to a constant ν0, then the system (33) is diagonal in

the Fourier domain, with matrix M0 = ispb̂(νj) − sdĉ(νj). The solution to (34) is given
by an exponential

û(z) = e(z−z0)M0û(z0), (35)

that is straightforward to compute in the Fourier domain. When ν varies not too much
about ν0, then (35) is an approximate solution to (34) and the difference

û(z)− e(z−z0)M0û(z0) (36)

should vary slowly. Now define

v̂(z; M0, z0) = e−(z−z0)M0û. (37)

Then (36) implies that
v̂(z)− û(z0) (38)

should vary slowly. In fact v̂ satisfies the differential equation

∂v̂

∂z
(z) = e−(z−z0)M0(M(z)−M0)e

(z−z0)M0 v̂(z). (39)

Here, if ν is in an interval close to ν0 the matrix M −M0 is small. Also we will assume
z − z0 is small, so that the r.h.s. of (39) is smaller than the r.h.s. of the original ODE
(34). Equation (39) is of course valid for any M0. For this to be useful, M0 should simply
be diagonal in the Fourier domain and such that M −M0 is small.

16

We could call (39) a preconditioned system1,because it is somewhat similar to the idea
of preconditioning (modifying a system wit a smart guess so that convergence becomes
better).

Another advantage of (39) is that the maximal error is not at k ≈ 0, but will more
likely be at large values of |k|, with near horizontal propagation, since there the difference
M −M0 tends to be the largest.

We propose to solve (39) by a Runge-Kutta method. Because these are one-steps
methods it is not too difficult to change from v(z; M0, z0) to some v(z; M1, z1), and in ad-
dition they do not require special startup procedures (as appear to be needed in multistep
methods).

When space decay included in the operator M , then M −M0 is generally no longer
small, and the “preconditioning” appears too difficult to apply. Therefore we propose
to apply an exponential decay factor at each step, where the exponent is non-zero only
around the boundary of the domain.

4.2. VARIABLES AND SEQUENCE OF STEPS INVOLVED IN THE COM-
PUTATION

In the Runge-Kutta approach in general the Runge-Kutta steps will not necessarily
be equal to the grid points in depth. We distinguish the depth stepping algorithm from
the output algorithm.

Depth stepping

The main variables here are the depths for the Runge-Kutta depth stepping zj, the
unpreconditioned values of û at these depths denoted by ûj, and the v̂j+1,j, that will denote
the approximation to v(zj+1; Mj, zj). The ûj, v̂j+1,j will be stored in Fourier domain.

Computational steps are
Step 1 v̂j+1,j = RK-step(zj+1, zj, ûj, . . .)
Step 2 If adaptive stepping: check error estimate, if needed change zj+1 and redo step 1
Step 3 Multiply by exponential space-decay factor, non-zero exponent around boundary
Step 4 Interpolated output(v̂j+1,j, ûj, zj+1, zj, Mj)
Step 5 ûj+1 = e(zj+1−zj)Mj v̂j+1,j, j = j + 1, go back to step 1

Number of FFT’s (the dominant contribution to the cost for application to migration)
is given by2 2KnRK, where nRK is the number of function evaluations per RK-step and
K is the number of terms in multiplication/convolution approximation.

Output

The output involves interpolation between v̂j+1,j and ûj, to obtain v̂out at intermediate

1I still have to check for official terminology.
2Assumes symmetrized selfadjoint form, use that one of F , F−1 can be done outside the sum, and

that weights add up to one
∑K

j=1 wj = 1

17

depths, multiplication according to

ûout = e(zout−zj)Mj v̂out,

and then if needed Fourier transformation back to the space domain. The latter would
be the dominant cost.

5. NUMERICAL EXAMPLES

We hope to address this in a future version. Numerical examples so far show good
behavior in smooth models with large lateral velocity variations. There is not yet a good
comparison in speed, but the method is similar to generalized screens.

6. DISCUSSION

Discussion will also be included in a future version.

Appendix A. LEFT AND RIGHT PSEUDODIFFERENTIAL OPERATORS

In this appendix we use the following notation. We let x ∈ Rn, Dx = −i∂/∂x.
By α, β we denote multi-indices, α = (α1, . . . , αn), ∂α

x = ∂α1
x1

. . . ∂αn
xn

, α! = α1! . . . αn!,
|α| = ∑n

j=1 αj.

A (standard) symbol of order m is a function a ∈ C∞(Rn × Rn) that satisfies

∣∣∂α
kx

∂β
xa(x, kx)

∣∣ ≤ Cα,β(1 + |kx|)m−|α|,

the set of such symbols is denoted Sm or Sm(Rn × Rn), we denote S−∞ =
⋂

m Sm.

With such a symbol we can define a pseudodifferential operator. There are multiple
ways to do this (quantizations). The standard or left quantization is given by

OpL Au = (2π)−n

∫

Rn

∫

Rn

A(x, kx)e
i(x−y)·kxu(y) dkx dy (A-1)

We will use standard notation A(x,D) = OpL A. This corresponds to first multiplying in
Fourier space, and then in position space. Alternatively we have the following definition.

OpR Au = (2π)−n

∫

Rn

∫

Rn

A(y, kx)e
i(x−y)·kxu(y) dkx dy (A-2)

that is equal to (OpL A)∗. The symmetric choice is to replace A(x, kx) in (A-1) by
A((x + y)/2, kx) which leads to the Weyl quantification. Unlike the previous choices
it it selfadjoint when a is real. This will not be considered here, because there seems to
be no approximation method comparable to the one discussed in section 3. To have a
selfadjoint operator associated with a real symbol we will consider 1

2
(OpL A + OpR A).

18

The adjoint of a pseudodifferential operator is again a pseudodifferential operator with
(left-) symbol

∑
α

(−i)|α|

α!
∂α

kx
∂α

x a(x, kx), modulo S−∞. (A-3)

The product of two pseudodifferential operators is again a pseudodifferential operator.
The (left-) symbol of the operator OpL A OpL B is given by

A#B = A#LB =
∑

α

(−i)|α|

α!

∂αA

∂kα
x

∂αB

∂xα
, modulo S−∞. (A-4)

Most of the operators we will consider are polyhomogeneous, meaning that A(x, kx) =∑
k<=m Am where each Ak is homogeneous of degree k in kx for |kx| greater than some

constant C.

Proof of Lemma 1 It is sufficient to find a sequence of symbols B(k) ∈ S1, k =
0, 1, . . ., such that R(k) := B(k)2 − A is in S1−k on (8). We let B(0)(z, x, kx, ω) =√

A(z, x, kx, ω), then

B(0)2 − A = (−i)
n−1∑
i=1

∂B(0)

∂kx

∂B(0)

∂x
+ l.o.t.

Now if we have such B(k), then we can set

B(k+1) = B(k) − 1

2B(0)
R(k),

which proves the statement for B. Similarly we can prove the other statements.

AppendixB. SMOOTH CUTOFF AND SOME OTHER FUNCTIONS

We give here some functions that are used in the main text. A smooth “cutoff”
function h(1)(y), y ∈ R, that is zero for y < 0 and 1 for y > 1 is given by

h(1)(y) =

0 y ≤ 0
e−1/y

e−1/y+e−1/(1−y) y ∈ [0, 1]

1 y ≥ 1.

(B-1)

A function that is the identify h(2)(y) = y for y < 0, and becomes constant equal to 1 for
y > 2 is given by

h(2)(y) =

∫ y

0

(1− h(1)(ỹ/2)) dỹ. (B-2)

A localized bump at y = 0 is given by

h(3)(y) = e−(
√

πy)2 . (B-3)

19

REFERENCES

Biondi, B. (2002). Stable wide-angle fourier finite-difference downward extrapolation of
3-d wavefields. Geophysics, 67(03):872–882.

de Hoop, M. V., Le Rousseau, J. H., and Wu, R.-S. (2000). Generalization of the phase-
screen approximation for the scattering of acoustic waves. Wave Motion, 31(1):43–70.

Gazdag, J. and Sguazzero, P. (1984). Migration of seismic data by phase-shift plus inter-
polation. Geophysics, 49(02):124–131.

Huang, L. Y., Fehler, M. C., and Wu, R. S. (1999). Extended local born fourier migration
method. Geophysics, 64(5):1524–1534.

Kincaid, D. and Cheney, W. (1996). Numerical analysis. Brooks/Cole Publishing Co.,
Pacific Grove, CA, second edition. Mathematics of scientific computing.

Ristow, D. and Ruhl, T. (1994). Fourier finite-difference migration. Geophysics,
59(12):1882–1893.

Stoer, J. and Bulirsch, R. (2002). Introduction to numerical analysis, volume 12 of Texts
in Applied Mathematics. Springer-Verlag, New York, third edition. Translated from
the German by R. Bartels, W. Gautschi and C. Witzgall.

Stoffa, P. L., Fokkema, J. T., de Luna Freire, R. M., and Kessinger, W. P. (1990). Split-
step fourier migration. Geophysics, 55(04):410–421.

Taylor, M. E. (1975). Reflection of singularities of solutions to systems of differential
equations. Comm. Pure Appl. Math., 28:457–478.

20

