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ABSTRACT

Strong refraction of waves in the migration velocity model introduces kinematic
artifacts - coherent reflectivity not corresponding to actual reflectors - into the im-
age volumes produced by prestack depth migration applied to individual data bins.
This pathology occurs for all common binning strategies, including common source,
common offset, and common scattering angle. Since the artifacts move out with bin
parameter, their effect on the final stacked image is minimal, provided that the migra-
tion velocity model is kinematically correct. However common image gathers exhibit
energetic events with substantial residual moveout, even when the migration velocity
model is kinematically correct.

INTRODUCTION

Unstacked migrated image volumes are the raw material of migration velocity analysis.
Migration velocities are assessed and estimated by means of the semblance principle: if
the velocity is correct, then images formed from different data bins within the unstacked
data volume should be the same, at least with respect to phase. Thus image gathers
(migrated traces sharing a common surface location), displayed in depth vs. bin parame-
ter, should appear flat. Velocity analysis adjusts migration velocity iteratively to flatten
image gathers, the flatness being assessed either directly through visual inspection, or
indirectly through velocity spectrum peak location, or both. (?; ?; ?; 7).

In principle, any binning scheme can serve as the basis for a velocity analysis method,
so long as independent images can be formed from each bin - that is, so long as the
migration operator can be applied binwise. Common choices are shot and offset binning.
Several authors have recently explored formation of image gathers using diffraction sum
(“Kirchhoff”) operators which image events at selected scattering angles (?; ?; 7). We
shall refer to this imaging method as common scattering angle Kirchhoff migration.

Strong lateral velocity variation (“complex structure”) complicates both the theory
and the practice of prestack depth migration. Lateral velocity variation induces multi-
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pathing, i.e. the appearance of multiple ray paths and arrival times connecting source and
receiver locations with scattering points. Imaging methods successful in models with mild
lateral velocity variation may fail in the presence of multipathing. For example, prestack
Kirchhoff migration with first arrivals does not always produce accurate (stacked) images
in complex structure (?; 7). A number of authors have explored Kirchhoff migration with
most energetic, as opposed to earliest, arrivals (?). The examples presented in (?) suggest
that even most energetic arrivals may not be sufficient to produce high quality images:
in some cases, all arrivals carrying significant energy may be required. Recent theoretical
work (?) is consistent with this suggestion.

The purpose of this paper is to demonstrate that multipathing generally leads to inac-
curate unstacked image volumes, containing spurious coherent events unrelated to actual
reflectors. We shall call these spurious events kinematic artifacts, to emphasize that their
origin is fundamentally different from that of other coherent image noises, such as diffrac-
tions from data truncations and unsuppressed multiple reflections. All common binning
strategies, and all binwise prestack migration methods, produce kinematic artifacts in
complex structure. As a result, the semblance principle fails for such prestack migration
methods in the presence of strong lateral velocity variation: image gathers may not be
flat, even when the velocity model closely approrimates the actual propagation velocity,
and all arrivals are used in the migration process.

The failure of the semblance principle is a straightforward consequence of the existence
of multiple ray paths connecting reflection points with source and receiver locations.
Independent migration of data bins does not give the imaging method access to event
slowness in complementary, out-of-bin directions, and therefore permits imaging along
several distinct (incident-reflected) ray pairs corresponding to a within-bin event. Thus
energy arriving in the data along one ray pair may be imaged at the reflection point of
another ray pair, giving rise to a kinematic artifact.

Claerbout has cited this phenomenon to explain the failure of the exploding reflector
model to account properly for all events in zero-offset sections when the velocity model is
strongly refracting (7). In the same way, events in a shot profile determine the receiver
component of slowness (i.e. rate of change of event arrival time with receiver position),
but not the source component, which in principle permits a single event to be imaged
along several ray pairs. Nolan demonstrated that this could actually occur, using sim-
ple synthetic examples (?; ?). While Nolan used two-way reverse time finite difference
migration to illustrate his conclusions, they apply equally well to Kirchhoff shot profile
migration using all arrivals, or to shot profile migration using depth extrapolation. When
the velocity is correct, the artifacts move out with bin parameter, whereas the correct
image components do not: this fact accounts for the disappearance of the artifacts in the
final stacked image (7). However image artifacts are present with strength equal to (or
even sometimes greater than) that of correct image components in the prestack image
volume. Their presence renders the image gathers strongly dependent on shot position
(non-flat), even with precisely correct velocity.

We will extend Nolan’s result by demonstrating that kinematic artifacts occur in



prestack image volumes produced by common offset and common scattering angle Kirch-
hoff migration. In particular, contrary to the assertion in (?), image gathers produced
using common scattering angle Kirchhoff migration are not in general flat, even when the
velocity is correct. Therefore, Kirchhoff migration in the angle domain does not appear
to be categorically superior to Kirchhoff (or other binwise) migration in the offset or shot
domains as a basis for velocity analysis.

We will frame our discussion in terms of Kirchhoff migration, because the physics
of artifact generation are most evident in the structure of Kirchhoff imaging algorithms
and because the version of angle domain imaging which suffers from artifacts is usually
formulated as a diffraction sum (and indeed is difficult to formulate in any other way).
However the reader should be aware that any kinematically equivalent technique will
yield the same results. For example, reverse time shot profile migration and Kirchhoff
shot profile migration are equally prone to kinematic artifacts in complex structure. It is
image formation from individual bins which is responsible for artifact generation, not any
particular method of image computation.

The next section explains the kinematics of multipathing-induced image artifacts,
with details spelled out for both common offset and common scattering angle Kirchhoff
migration (?; 7). The following section presents two synthetic examples illustrating the
generation of artifacts and the failure of the semblance principle. An acoustic lens model
with flat underlying reflector, very similar to that used in (?), is simple enough that
the rays pairs of both correct reflectors and artifacts are easily identifiable. The second
example is due to (?), and consists of a smoothed version of the Marmousi velocity model
(?) with a flat reflector. Recognition of kinematic artifacts is more difficult in this more
complex model, but they are present nonetheless.

We end with a discussion of the implications of our results for velocity analysis. In
particular, we contrast the properties of binwise prestack migration established here with
those of a prestack migration method not based on independent data bin imaging, namely
Claerbout’s “survey sinking” migration (7). Recent theoretical work (?) has shown that
prestack image volumes generated by survey sinking do not exhibit artifacts, and that
the focussing characteristic of correct velocity for this type of migration is not affected
by strong lateral velocity variation. This comparison suggests some directions for further
research.

Two appendices collect mathematical and computational details.

THE KINEMATICS OF ARTIFACTS

Given a velocity model, a (potential) reflection point z is connected to a source position
s by one or more branches of (one-way) traveltime, and similarly to a receiver position
r by one or more branches. The two-way time therefore is indexed on both source and
receiver traveltime branches: we write T (z, s, r) for the two-way time which is the sum
of the ith branch from source s to x and the jth branch from z to receiver r.

We do not assume complete or areal coverage, except when otherwise stated, that is, s
and 7 do not necessarily sample areas. The in fact these variables really signify parameter
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vectors which determine source and receiver positions, not necessarily the position vectors
themselves. For example, for marine streamer geometry it is natural to take for s a two-
vector (source-x and source-y), and for r the offset. Source-receiver azimuth, and therefore
receiver position, is then a function of s and r.

Kirchhoff or diffraction sum migration places at an image point x the sum over sources
s, receivers 7, and traveltime branches (7, 7) of the data d(r, s,t) for t = T3 (z, s, 7), plus
possibly some filtering and scaling by amplitudes. When many branches of traveltime
exist, the relative phases of the data sums over the branches must be adjusted by appli-
cation of powers of the Hilbert transform. Also so called true amplitude migration, or
migration-inversion, can be produced by properly chosing amplitudes. We have relegated
the details of these refinements to Appendix A. For the moment, simply write for the
image amplitude

fstack () = Z Z (...)d(s,r, T09) (z,s,7)) (1)

(s,7) (4:9)

in which (...) represents amplitudes, filters, and other operators which do not affect the
presence or absence of events. The subscript emphasizes that fgac () is the stack of the
migrated data volume, which includes contributions from all traces.

An event is characterized by an identifiable arrival time function Ty, (s, r) of source
position s and receiver position 7. We presume throughout our discussion that sampling
in s and r is sufficiently dense that the source and receiver slownesses of the event

_ aTvdata _ aTvdata
pS - 88 Y p’l" - 8’[’

are accurately determined. The event contributes significant image energy at x if one
or more of the diffraction surfaces t = T/ (z,s,r) is tangent to the event surface t =
Taata(s,7) at for s, 7 within the definition of the event: that is, fsac () gets a contribution
from the event if

y oT(d) oT(d)
T(Z,J):Taa — =p,, ——— =D, 2

Gatas —g— = Psy —5— =P (2)
I NEED A GOOD REFERENCE FOR THIS OTHER THAN RAKESH]| Conversely,
if a reflector exists at x, then the reflector contributes energy only to events for which
equations (2) hold. See Figure 1. We will call equations (2) the imaging equations, as
they determine the relation between reflector and event locations.

The kinematic artifacts whose existence is the major claim of this paper arise through
interaction of two traveltime branches, say indexed by (i, 7) and (¢', '), at different image
points. Suppose that energy enters the data from a reflector at x along the incident-
reflected ray pair for branch (i, j), i.e. equations (2) hold for z, s, r,, j. Now suppose that
equations (2) also hold for another branch of the traveltime, with different indices (', 5'),
at another image point ', for the same event, i.e. at the same values of s, r,t, p;, p,. Then
the Kirchhoff migration operator (equation (1)) produces image energy at z', whether a
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reflector actually exists at that location or not. That is, energy arriving in the data due
to one ray pair is migrated along another. The result is a kinematic image artifact.

Kinematic artifacts do not occur in general for areal coverage. Idealizing slightly,
suppose that s and r are coordinates in a plane (or on a line, for imaging based on a 2D
Earth model) containing all source and receiver positions, and that s and r densely sample
regions in this plane. Then p; is a 2-vector, representing two of three components of a ray
slowness vector, and determines the takeoff velocity vector of the ray connecting s with
x, from ray theory, hence the ray itself. Similarly p, determines the ray connecting r with
x. So long as these rays intersect at only one point (z) with total time t = Tgaa(s,7), no
other branch of the traveltime can produce a part of the diffraction surface tangent to the
event surface at (s,7, Tgata(S,7)), so necessarily i’ = 4,5’ = j, and 2’ = x. The condition
that the total time determine the reflection point is the Traveltime Injectivity Condition
(“TIC”) of (?), who gave a rigorous proof that artifacts do not exist in the stacked image
for areal coverage (or linear coverage, for 2D) provided that TIC is assumed. While it is
possible to construct velocity models and areal coverage geometries that violate the TIC,
it is satisfied in many common imaging situations, for instance if incident and reflected
rays to not turn horizontal. We will tacitly assume that TIC applies to the imaging
problem with areal source and receiver coverage throughout our discussion.

When coverage is not areal and multipathing occurs, kinematic artifacts are the rule,
rather than the exception. The example that concerns us here is the imaging of an
individual data bin. We will treat two cases explicitly, both in 2D, which will be illustrated
in the next section. In both cases 3D generalizations are clear; generation of artifacts is
if anything easier for the analogous 3D imaging situations.

In both cases s and r are coordinates on a line. Migration of the common offset bin
with half-offset h is given by

fotset (@, h) =) 0> ()d(s, s + 20, T4)(, 5, 5 + 2h)) (3)

s (44)

An event in an offset bin determines only the midpoint slowness p,, = p, + ps; it does
not determine the offset slowness p, = p, — ps, as the offset moveout is not available.
Therefore the correct imaging equations for a single offset bin are

oT@d)  gri) g7 d)

T(i’j) = T4ata = = Pm 4
data> 88 + 8T am p ( )

m being the midpoint m = (s + r)/2.

Compared to equations (2), equations (4) have lost an entire equation: the offset
component p;, of event moveout does not constrain the reflection point. So it is perhaps not
surprising equations (4) have in general many more solutions. In particular, multipathing
generally induces kinematic artifacts in offset image bins, as described above. The paper
(?) gave a simple example of an artifact at zero offset, while (?) showed that such artifacts
exist at all offsets, also at the purely kinematic level (map migration). The next section
shows explicit Kirchhoff migrations corresponding to the kinematics of (?).
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If you sum the right hand side of equation (??) over half offset h, you obtain the right
hand side of equation (??). Since the stacked image has no artifacts, as we have argued,
stacking must remove those present in the offset bins - that is, the artifacts must move
out within the offset CIGs, whereas the correct image components do not. The examples
of the next section illustrate this property of kinematic artifacts.

The second example, common scattering angle migration, is a bit more involved. Re-
flector dip v and scattering (opening) angle § determine (in 2D) an incident - reflected
ray pair (see Figure 1). Thus we can view s and r, as well as ¢, as functions of z, 6, and
v. The common scattering angle Kirchhoff migration operator is

fangle (%, 0) = Z()d(s(z, 0,v),r(z,0,v), T(x,0,v)) (5)

v

(see (?7) NEED MORE REFS HERE). Note that since z,6,v determine the scattering
ray pair completely, the summation over traveltime branches is already implicit in the
dependence on these variables, so that we do not need to supply the traveltime function
with branch indices.

It is important to understand that the imaging method (5) which we call common
scattering angle Kirchhoff migration, is not equivalent, even kinematically, to the “wave
equation angle domain migration” introduced in (?; ?) [MORE REFS]. We will have a
bit more to say about the latter algorithm in the concluding section.

It is not so easy to envision the operator defined in equation (??) as defining the
restriction of the operator defined in equation (??) to a data bin, but in fact that is
precisely its identity. The bin must be described in the phase space of the data: it consists
of those event elements which are tangent to the constant scattering angle diffraction
surface, parametrized by v.

The imaging equations which express this tangency are

T(z,0,v) = Tyata(s(z, 0, v), r(x,0,v)), g—f(x,ﬂ,l/) = ps%(aﬁ,e,u) (6)

Once again, the system (6) has one fewer equation than does the system (2), so it is
not surprising that it has many more solutions in general.

Appendix A describes a general formulation of binwise Kirchhoff imaging, which treats
all binning schemes, including the two just described, in a unified way.

EXAMPLES

In this section we present two 2D examples which illustrated the formation of kinematic
artifacts in common offset and common scattering angle prestack migration. The first
model contains a horizontal reflector below a low velocity lens, and closely resemble the
model used in (?), also (?). The lens is sufficiently refracting that multipathing occurs.
The second example is based on a slight smoothing of the Marmousi velocty model (?),
which is well known to produce multipathing. Reflectivity is again supplied by a flat
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reflector, at the level of the “target” structure in the original Marmousi model. This
“Marmousi plus flat reflector” model was introduced by (?).

We demonstrate the presence of image artifacts in two ways. By solving the imaging
equations (i.e. equations (??) or (??)) we determine rays that lead to artifacts and
predict the positions of both correctly and incorrectly located reflectors in (offset and
angle) bin images and common image point gathers. Second we migrate synthetic data
using the numerical implementation of Kirchhoff prestack depth migration described in
the Appendix A. By combining the results we can clearly distinguish between kinematic
artifacts and other sources of “noise” that may be present in the image. The results show
that artifacts are present and are energetically of the same order of magnitude as the
correctly positioned reflectors. There is strong agreement between kinematic predictions
of reflector locations and apparent reflectors in the migrated image volume.

Clearly a field data example illustrating the appearance of kinematic artifacts would
be most interesting. The theory and examples presented here and elsewhere leave little
doubt that artifacts occur in imaging near and under gas chimneys, salt flanks, and other
highly refracting structures. However the purpose of examples in the context of this
paper is to verify the appearance in migrated volumes of image components predicted by
the theory. While it should be possible to identify artifacts in field data image bins, as
is done here with synthetics, using any reasonable velocity model, illustration of our key
contention - that image gathers are not flat for “correct” velocity due to multiple images of
primary reflections - requires that both a “correct” velocity model and primary reflection
energy be idenitified first. This is a nontrivial task precisely in those situations of strong
lateral velocity variation that give rise to the phenomenon under study. Therefore we have
limited ourselves in this exposition to synthetic examples, where the “correct” velocity is
under our control.

The Lens Model

The first velocity model contains a low velocity Gaussian lens centered 1 km below the
origin of the coordinate system (on the recording surface xo = 0). The velocity is given
explicitly by and is given explicitly by

c(z1,22) =1-0.4 e~ 9@ H(@2—1)%) )

in km/s. We locate horizontal reflector at depth x5 = 2 km. Velocity model and reflector
are displayed in Figure 2. Some of the rays and wave fronts produced by this model are
displayed in Figure 3. A triplication occurs below the lens, leading to three travel-time
functions, numbered 1 to 3 as indicated in the figure.

We generated a synthetic dataset for this model using a finite difference wave equation
solver of order 2 in time and 4 in space. To simulate a reflector, we introduced a 15% jump
in the velocity profile at o = 2 km. The geometry is such that no multiple reflections are
recorded. The sampling was adequate in all directions (ten gridpoints per wavelength),
and the time sample rate high enough, to yield at most 2% error in phase velocity and
no visible grid dispersion (7). The source was a (4, 10, 20, 40) Hz zero phase bandpass
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filter. The data consists of 401 shotrecords for s ranging from from —2 to 2 km with shot
spacing 0.01 km. For each shot the response was recorded at 401 receivers with the same
coverage and sample rate as the shots. The recorded data simply sampled the simulated
pressure field at a depth of 10 m below the surface.

No absorbing boundary conditions were applied, but the domain was chosen so large
that reflections from the boundary arrived significantly later than reflections from the hor-
izontal reflector, with different moveout, so that boundary reflections have no significant
effect on the migrated image volume. Figure 4 displays a shot record for s = 0.5.

A numerical implementation of Kirchhoff prestack depth migration for the offset and
angle domains (equations (3) and (5) respectively) produced offset- and angle-dependent
image volumes fofset (2, h) and fange(x,6) respectively. The stacked image (fstack (), €-
quation (1)) amounts to the summation of foget(2, k) over h, or fangie(,6) over 6; except
for discretization effects, the results should be the same. Figure 5 shows the stacked im-
age: the reflector is indeed recovered at the correct position, and no artifacts appear, as
predicted by (7).

The numerical implementation of Kirchhoff migration used in these examples is de-
scribed in Appendix A.

Common offset

To determine the position and slownesses of an event in the data, we trace source and
receiver rays from the reflection point in the subsurface, determine where they intersect
the acquisition plane, given in this example by zo = 0.01 km, and calculate s,r,t =
Taata(S,7), s, and p,. The complete set of reflectors, correct and artifact, corresponding
to this event are obtained by solving the imaging equations (4).

Solving these equations involves a combination of ray tracing and root finding. Ap-
pendix B describes the solution method in detail.

Figure 6 displays the results of this analysis for a reflecting element at z = (0.303, 2)
km, with opening angle 28.05 degrees (chosen so that the offset was equal to 1 km).
Migration forms an image at three positions, corresponding to the three ray pairs shown
in the figure. This prediction is completely kinematic; to see whether significant energy is
imaged at these positions we overlay the constant offset image for offset h = 1 km, with
the ray pairs in Figure 7. Indeed roughly equivalent image amplitude occurs at all three
positions, with apparent reflector orientation as predicted by the kinematic computation.

We have similarly analyzed the kinematics of offset common image gathers (“CIGs”),
and thus predicted the kinematics of events in the offset CIG for z; = 0.3 km. These
kinematic predictions are the colored lines in Figure 8, the different colors corresponding
to different combinations of travel time functions (i.e. index pairs (4,7)). The kinematic
predictions are overlain on the graylevel plot of the CIG produced by prestack depth
migration. All kinematic predictions coincide with events in the migrated data.



Common scattering angle

Kinematic predictions of image components, both correct and artifact, follows from an
analysis similar to that used in the common offset case. Algorithmic details are explained
in Appendix B.

Figure 9 shows the ray pairs corresponding to correct image and artifacts for data due
to reflection at (0.3, 2) km, opening angle 40 degrees and for reflection at (0,2) km (below
the lens) opening angle 10 degrees. In addition to the ray pairs, we display the isochrons
(the solutions in position z of t = T4 (x, r, s) for the various branches (i, §)). The various
images of a given event, correct and artifact, occur at different opening angles, therefore
this picture cannot be compared with a single constant angle image. A constant angle
image for angle 30 degrees is given in Figure 10.

Figure 11 shows a greylevel plot of the angle CIG for z; = 0.3 km, with the predicted
events superimposed (colored lines). Again all the predicted artifacts can be observed
in the synthetic data example and there is strong agreement between the kinematic and
synthetic data plots. Angle CIG’s for z; = 0 km and Z; = 0.6 km are given in Figure 12.
Again artifacts are present and of size of the same order of magnitude as the correct
image. As can be expected the artifact moves to larger angles for increasing ;.

DISCUSSION

The preceding examples establish that kinematic artifacts, i.e. coherent reflectivity not
corresponding to actual reflectors, can exist in prestack image volumes produced by bin-
wise migration, given strong lateral velocity variation and concommitant multipathing.
Such artifacts exist in particular for both common offset and common angle Kirchhoff
prestack depth migration, and we have given explicit, clear-cut 2D examples of this phe-
nomenon. In particular, formulation of Kirchhoff migration in the common angle domain
does not suppress imaging artifacts, contrary to assertions in the literature (7).

We have focused our attention on Kirchhoff migration, but in fact the same conclusions
hold for any binwise migration method including contributions from all arrivals, such
as reverse time or depth extrapolation shot profile migration. For example, Nolan has
exhibited kinematic artifacts in reverse time common source migration image volumes
(?; 7). The examples in (?) illustrate the necessity of including all arrivals carrying
significant energy to maintain image quality in the presence of multipathing; the relevant
theory also suggests this requirement (?; 7). However it is precisely the interaction of
various arrival branches that create kinematic artifacts.

Perhaps the most striking conclusion to be drawn from our analysis is that image
gathers produced by binwise migration are not in general flat in the presence of strong
refraction, even when the velocity model is precisely correct, because of the production
of kinematic artifacts. Flattening image gathers is the underlying mechanism of practical
velocity analysis. Gathers may be contaminated by many types of coherent noise. However
kinematic artifacts my be particularly difficult to distinguish from events which should be
flattened. Artifacts can move out in a wide variety of styles, as even our simple examples



illustrate. Artifacts bear no particular space-time relation to the actual reflectors which
they spoof: unlike multiple reflections, they can appear either earlier or later than the
source reflector in an image gather, and are more or less equally energetic. For all of these
reasons, processing designed to suppress multiple reflection energy or edge effects will
not attenuate kinematic artifacts, which will be present whenever primary reflections are
imaged at all. Thus the presence of kinematic artifacts must complicate migration velocity
analysis in complex structure. The complication could easily be fatal for automated
velocity analysis algorithms, such as differential semblance optimization [REFERENCE].

Very recently, evidence has emerged that “survey-sinking” or “double square root”
migration, introduced by Claerbout (?) does not generate kinematic artifacts (7). The
same is true of the wave equation common angle migration techniques (?; ?7), which are
variants on survey-sinking. While these algorithms were introduced as applications of
wavefield depth extrapolation, the fundamental reason for the absence of artifacts has
nothing to do with depth extrapolation per se. The essential feature of these algorithms,
responsible for the absence of kinematic artifacts, is that they do not migrate individual
image bins: each output point in the prestack image volume depends (in principle) on
the entire data volume, in such a way that migration of energy along the wrong ray pair
is simply impossible.

The difference is perhaps best explained by comparing prestack Kirchhoff common
offset migration (equation (3)) with a diffraction sum expression for survey-sinking mi-
gration. [This comparison also emphasizes our point that depth extrapolation is not the
algorithm feature which guarantees artifact avoidance.] Survey sinking introduces a (vec-
tor) parameter of the image volume, generally called (half) offset and denoted by h. The
name is natural in view of Claerbout’s motivation of survey sinking (?), but in fact this
parameter cannot be identified with the source-receiver offset of the survey geometry - for
example, it does not need to be horizontally oriented [REF TO BIONDO’S SEG PAPER].
Introduce the survey sinking two way time branches T (z, h, s,7) - the sum of the ith
branch of the one-way time from s to x — h and the jth branch of the one-way time from
x + h to r. Then the Kirchhoff representation of survey-sinking migration is

fs(,h) =Y > () d(s,r, T (x, b, s,7)) (8)

ST 1,]

Claerbout’s imaging condition is: extract the zero-offset section. Clearly at h = 0 equation
(8) becomes identical to equation (1) so that fs(x,0) = fsac(x). The nonzero offset
output also involves the entire data set: this is not a binwise migration algorithm, and
the algorithm accesses full events for each A, unrestricted by data binning. Therefore full
slowness information is available at each h.

The paper (?) contains a demonstration that equation (8) actually yields the same
migrated image as survey sinking via the double square root equation as defined in (?), and
also that this form of prestack migration produces an image volume uncontaminated by
kinematic artifacts whenever the same is true of the stacked image. Wave equation angle
domain migration is essentially survey sinking migration followed by a Radon transform
in offset and time (?) or depth (?), so these methods are also artifact-free.
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When the migration velocity is kinematically accurate, the output of survey sinking
migration is concentrated or focussed at offset zero. The result of (?) shows that fo-
cussing occurs at zero offset even in the presence of severe lateral velocity variation and
multipathing. It has been suggested that the focussing property of survey sinking migra-
tion could be used as the basis of a velocity analysis method, i.e. as another form of the
semblance principle (7). [REFERENCE: SHERWOOD ARTICLE FROM SEG MIGRA-
TION VOLUME - ALSO DOES THIS HAVE SOMETHING TO DO WITH FOCUSSING
ANALYSIS A LA FAYE AND JEANNOT 1986 SEG? I WILL TRACK THIS DOWN]
Our results suggest that this velocity analysis concept may be particularly appropriate
for accurate imaging in complex structure.
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APPENDIX A

In this appendix we present a unified theory of prestack Kirchhoff migration, applica-
ble to all domains (shot, offset, angle,...). This formulation facilitates a uniform analysis
of artifact generation, via conditions which we call the imaging equations. We also de-
scribe the particular choices of discretization used in our computational implementation
of Kirchhoff migration.

Migration Operators

A reflecting pair of geometrical optics rays can be parametrized by the reflection point
z in the subsurface and the takeoff angles (5, ) for the source and receiver rays. For 2D
modeling, z = (z1, x2), 5 denoting depth, and /3, o are ordinary angles. For 3D modeling,
x = (x1, T2, T3), T3 denoting depth, and [, « are solid angles.

We assume for convenience that the source and receiver positions are located on a
constant-depth acquisition plane, say x5 = 0 (2D) or 3 = 0 (3D). The analysis remains
valid if these positions lie on non-planar surfaces instead, and if sources and receivers lie
at different depths. The data (z,,a) determines the intersection point s(z,3) of the
source ray with the acquistion plane together with the corresponding travel time ts(z, 3),
and similarly for the receiver r(z, @), t.(z, a), see Figure 1.

The map (z,a) — (x,s(z,a)) in general maps several angles « to the same source
(multipathing). Therefore there are multiple inverse functions mapping (z,s) to the
takeoff angle, which we will denote by o((z,s). Each inverse function is defined for

(z,s) in a set D® and corresponds to a branch one-way travel time, denoted Tl(i) (z,s),
defined for (z,s) € D@,

Since the traveltime branches are generally only local, not global, it will be necessary to
cut off or mute the data to be summed over the resulting local diffraction surfaces. Define
a smooth cutoff (mute) function A7 (z, s) on D®, identically equal to one sufficiently far
from the boundary of D, and identically zero near the boundary.

The two way travel time 79 (z, s,7) is
T (z,5,1) = Tl(i) (z,8) + Tl(j) (x,7). 9)
In two dimensions we can define the scattering angle §%%)(x, s, r) by
009 (z,5,7) = a9 (z, 1) — aD(z, 5). (10)

For a definition of scattering angle - azimuth appropriate for three dimensions, see (?).
These functions are defined for (z,s,r) in a domain D) consisting of points (z, s, 7)
with (z,s) € D% and (z,r) € DY),

A cutoff function for the domain D) is given by

A(i’j)(a:, s,r) = Agi) (:1:, s) Agj)(l“,r)- (11)
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For the purposes of this paper, the Kirchhoff imaging formula is

fl@)y=>" / ds dr A (z,r, s)(H* =7~V d)(r, s, T (, 7, 5)). (12)

0,

Here n = 2 in 2D, n = 3 in 3D. The output is a single image function f(z) of position
- that is, this formula implements migration plus postmigration stack. The operator H
appearing in the integrand is the Hilbert transform with respect to time, and ¢® is the
KMAH index of the ith traveltime branch, to account for the phase shift that occurs when
the rays go through a caustic.

As mentioned above, (?) explained that this formula produces a correct image, with
reflectors in the right places and not elsewhere, provided that the so-called Traveltime
Injectivity Condition (“TIC”) is satisfied. This condition is satisfied for both examples
presented in the paper, and indeed our theoretical development assumes it. See (?) for
examples in which TIC fails, (?) for an extension of the TIC concept to general acquisition
geometries, and (?) for a less restrictive condition which also assures correct imaging.

Many variants of this formula have been proposed, either restricting the traveltime
branches appearing in the sum or adding amplitude factors to attempt to achieve “true”
reflection amplitude in the output image. As we have noted in the introduction, neglect
of traveltime branches generally degrades the image (?; 7). Variants taking into account
all traveltime branches are kinematically equivalent to (12), i.e. produce reflectors with
the same locations and orientations.

Various Kirchhoff prestack migration formulas follow from (12) by restricting the in-
tegral over (s,7) to a constant value of the image (or bin or gather) parameter. The
latter can be viewed as a function e of (z,a, 3), and hence as a (possibly) multivalued
function e (x, s,r). Three important examples are e(*/)(x,s,7) = s (common source),
e (x,s,7) = r —s (common offset), and e (z, s,7) = §09) (z, s, r) (common scattering
angle). Restricting the integral (12) by inserting a d-function of e we obtain

f(z,e) = Z/ds dr AG9)(z, s, 7)
2

x 8(e — e (z, 5, 7)) (H" =777 d)(s,r, T (z,5,7)), (13)

That is, the output is a function f(z,e) of position z and bin parameter e. A further
integration over e produces f(z) (output of (12)). So f(xz,e) is the unstacked image
volume, expressed in a generic way that applies to all of the binning schemes mentioned
above.

Imaging equations

Suppose a reflector at a subsurface point x leads to an event (wave front) at a position
in the data given by (s, r, ts+t,), with slowness (ps, pr). In (?) equations have been derived
that describe the points (z,€) in the image volume (i.e. the output f(z,e) in (13)) at

13



which this event leads to an apparent reflector. The apparent reflector coordinates (Z, €)
correspond one-to-one with the solutions (Z, p.) of the equations

) (Z,s,7) = ts + t,,
e(i:d) 1 — (1) /-
—<pe,aa—5]($,8,7')>+ ags (CC,S,T) = Ds,
e(i:d) 1 _ @) ,_
—{pe, aarj (z,s,7)) + 6?;7‘ (Z,s,7) = Dy (14)

Here p, is equal to the e-wave vector divided by —7 (the e-slowness or moveout). The bin
parameter (angle or offset) of the wave front is given by & = e(®7)(z, s, 7). Together, (14)
consists of 2n — 1 equations for 2n — 1 unknows, with no obvious dependencies. [Again,
n denotes space dimension, n = 2 for 2D imaging, n = 3 for 3D imaging.] So one might
guess that the solutions are stable, and indeed this is generally the case. As explained in
(?) one set of solutions corresponds to the correct image, with (i, j) corresponding to the
raypaths of the data (s, r, ps, pr, ts + t;), and T = x, p. = 0 (zero e move-out). In addition
there may be other sets of solutions - the artifacts of the title - that must satisfy p, # 0
in view of TIC (see (?)).

If e = offset, the equations (14) simplify to n equations for Z and p, = ps + p;:

T(i,j)(j’ $,7) = ts + ty,
Ds + Pr = Ps + Pr- (15)

Appendix B describes the numerical methods used to solve the equations (14) in the
offset and angle cases.

Numerical implementation of migration formulas

This section describes a numerical implementation of (13). The authors make no
pretense that this implementation is optimal in any way, other than that it appears to
approximate (13) with sufficient accuracy to illustrate the contentions in this paper.

Numerical implementation of (13) requires discrete approximations to the one-way
travel-time function, cutoff function, angle function Tl(i) (z,s), Agi) (z,5),a(z,s) for all
values of the branch index 7, and the integration in (13). The two-way quantities can then
be calculated from (9), (10), (11).

Suppose data is given on a regular grid of (s, 7, t) values with grid intervals (or interval
vectors, for 3D problems) As, Ar and At, possibly after binning from irregularly sampled
s and r. Image location and bin parameter occupy a regular grid of (z, e) values. Gridded
values of these coordinates will be denoted by §, 7, ¢, %, é respectively.

In our implementation of (13), we used numerical ray tracing to compute approxima-
tions to TV (%, 8), A" (4, 3), (&, 3) and the KMAH indices 0, keeping for each pair
(%,8) up to three arrivals. This tactic was adequate for the examples presented below;
the task of writing a general purpose code along these lines must be formidable.

Integrations over s, r are approximated by the trapezoidal rule. For time ¢ not in the
grid, the (possibly) Hilbert transformed data is approximated by linear interpolation. The
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0-function in e is approximated by adjoint interpolation. In the 2D imaging case, e is a
scalar variable, sampled at interval Ae. Let e, denote integer part of e() (Z,5,7)/Ae,
and eg,c = e9)(#,3,7)/Ae — ey In this notation a discrete approximation S to d(e —
el9)(%, 3,7)) is given by

(1 - efrac)éK(éa eint) + efrach(éa €int + 1)
Ae

(6,4, 8,7) :=

(16)

where dx is the Kronecker d on the Ae lattice. A similar approximation is possible for
the 3D case.

With these approximations, the discrete version of (13) is

f(a,e) = Aasar YN ACD(&,5,7)5(e, ¢, 5, 7) (H =0 d) (5,7, T (2, 5,7)). (17)

5,j 8,7

The implementation used below consisted of two stages. The first stage employed
numerical ODE solvers and interpolation routines in a general purpose mathematical
software package (Mathematica’™) to compute the gridded traveltime data (Tl(z) (z, 8),
AD(2,3), a(,3), 0®) and stored the results to disk files. The second stage consisted
of a program, written in C, which read the traveltime data and the input seismograms
from disk, and evaluated the sum (17), storing its results to disk as well.

For the lens model evaluations of (17), the one-way travel times T\”(z, s), a cutoff
A®)(z,s) and the one-way angle function o (z,s), i = 1,2,3, were computed on the
domain (21, ,,5) € [0,1] x [1.5,2.5] x [=2,2] km®, with grid interval 0.01 km in all three
directions. We made similar choices of discretization for the Marmousi problem.

APPENDIX B

This appendix gives a detailed account of the methods used to solve the imaging
equations (14), for both the common offset and common angle cases.

Common Offset

The first equation in (15) implies that there are rays connecting s and r to the imaging
point Z with total travel time equal to t;+%,. Denote by ps and p, the horizontal slownesses
of the rays at the surface. It follows that there must be ¢ such that

F(S: T, Ds, Dr, t) = X(Saﬁsa ls — t) - X(T,ﬁr, i+ t) = 0. (18)

Here x(s, p,t) is the position at time ¢ along the ray with initial conditions at the surface
determined by s, p.

The second equation in (15) implies that there is p such that ps = ps — p, pr = pr + p-
The image point 7 is the intersection point of the rays with surface initial conditions
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determined by (s,ps — p), (r,pr + p). Therefore artifacts correspond to solutions ¢, p,
p # 0, to the following equations for the coordinates Z; and Z, of the intersection point:

X(S,ps - D, ts - t) = X(Tapr +pa tr + t) (19)

We solve these equations using the Mathematica’ root finder. One can make use of the
fact that rays carrying significant energy in this example are increasing in depth, i.e. that
t is a monotone increasing function of depth along a ray, to first solve for ¢ as a function
of p. Then a single equation for p remains.

Creating a kinematic common image gather amounts to finding all solutions to (15)
for some fixed value of the horizontal image coordinate Z;. Since the reflector is flat
and specular, true reflection locations are parametrized by horizontal position z; and
scattering angle f. Each solution of (15) - i.e. each apparent reflector, true or artifact,
in the migrated image volume - corresponds to a true reflecting position which generated
the data event which it images. So we can parametrize the solutions of (15) by the
true reflection position (z1,6) to which it corresponds. In these calculations we use the
multivalued travel time database subsequently used for prestack migration.

For each pair of potential true reflection parameters (z1,6), we compute the surface
event coordinates s, 7, ps, pr, ts + t. as functions of x1,6. Since the horizontal coordinate
of the image 7, is prescribed, and the time is increasing with depth along both incident
and reflected rays in the region of interest, the travel time equation in (15) uniquely fixes
the depth coordinate Zy(z1,8). The ps, p, equation in (15) now determines a subset of all
(x1,0) that contributes to the CIG, i.e. we have to find all (z1,6) that satisfy

AT oTY
0= R(()f’fézzt(xlﬁe) = ( a; (i‘(l‘l,e),S) + 6; (.T(J?l,e),T)) - (ps(xlag) +pr($1,0))-

(20)

When at a zero (z,6) of Roﬂset(xl, 6) the gradlent °ﬂset # 0, then the zero set of Roffset
is locally a curve. In that case the zero set can be determlned in a stable manner by
a numerical root-finding algorithm. Our computations were based on this assumption,
which was sufficient to compute the examples given below. Note that it need not be

satisfied in general (see the remark at the end of the next subsection). For the value

71 = 0.3 we computed Rof’fiz)t for a sufficiently large array of (xl, 6) values. We observed

that in this case the gradient was nonzero at the zeroes of Roﬁset,
(i-7)

point. The values of R . were displayed, allowing for the approximate determination
of the zero set. The zero set was then determined premsely using a numerical root-
finding algorithm. At the exceptional point, where RoffSet and its gradient were zero, an
intersection of two of the zero curves occurred. In this case we determined the curves by
bisection, starting from under- and overestimates of the zero.

with a single exceptional

Common Angle

The analysis for common scattering angle binning follows the same pattern as for
common offset binning. For each point on the reflector given by z;, and opening angle

16



f the quantities s, ts, ps, 7, tr, pr can be determined as described above. First we compute
rays leading to correct image and artifacts for given values of s, g, ps, 7, t;, pr- As explained
in the previous section the travel time equation in (14) implies that there must be ¢ such
that (18) is satisfied. Given ps, ps (the “modeling” and “imaging” values of the source

slowness), there is a unique value p, = pg ’sj)(s,ps,;ﬁs,t_s) such that the second equation

of (14) is satisfied. Similarly p, = pg,r )(r, Dr, Pr, tr) satisfying the third equation can be

found. The two must be the same, which leads to the equation
0= pgz,sj) (Sa DPs, ﬁS7 ts - t) - pe(zl,;]) (7’, Pr, pra tr + t) (21)

Equations (18) and (21) form 3 equations for the 3 variables pg, pr, t (in 2D). The position
T is given by x(s, ps, ts — t) = x(r, pr, t, + t), the angle is computed from the directions of
the imaging rays at the intersection point.

The numerical rootfinding for these equations was done in two steps. If £ is a direction
(vector) with positive inner product with the velocity vectors of the rays to both source
and receiver, then the inner product of £ - F(...,t) is decreasing with ¢, and the solution
to &+ F = 0 is a straightforward rootfinding exercise. Then two equations remain with
unknowns ps, p,. By computing the values for an array of ps, p, the solutions can be found
approximately. By numerical rootfinding precise solutions can then be found.

The kinematic computation of position of wave fronts in the angle CIG proceeds
similarly as in the offset case. In this case, according to (21), the function ROﬂset (x1,0) is
replaced by

Rz(:ng%e(xlﬂ 0) . Ex )(S ps;ps, t ) pg’rj) (T, praﬁSa t_r): (22)

@)
where t; = T( )(x S), Ps = aTl (7, s) and similar for p;, t,.

Flgure 11 shows the results of this calculation for z; = 0.3, as discussed in the text.

For z;, = 0 we also tried to determine the zero set of Rarfg%e(xl, 0). However, we observed

that the gradient of R;i;]gle(xl, ) was close to zero and the determination of the zero set
using our methods became difficult.
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FiG. 1. Reflected ray pair, notation
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Fi1c. 2. Background medium and reflector
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X2

Fic. 3. Rays and wave fronts
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Fi1c. 4. Shot record at s = —0.5.
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FiG. 5. Stacked image
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X1

X2

F1G. 6. Some rays corresponding to image and artifact for a reflecting element at
z = (0.303,2).
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Fi1G. 7. Image from offset 1 with superimposed the rays from Figure 6.
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Fic. 8. Offset CIG, kinematic prediction and synthetic data image.
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Fic. 9. Isochron, and rays leading to artifacts and correct image for reflections at
(0.3,2), opening angle 40 degrees and for reflection at (0,2) opening angle 10 degrees.
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F1G. 10. Angle image for angle equal to 30 degrees.
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F1G. 11. Angle CIG, z; = 0.3, kinematic prediction and synthetic data calculation.
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F1G. 12. Angle CIG, synthetic data ;1 = 0 (a) and x; = 0.6 (b).
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